• Title/Summary/Keyword: Xanthomonas spp.

Search Result 25, Processing Time 0.023 seconds

A Search for Sources of Resistance to Powdery Mildew (Leveillula taurica (Lév.) Arn) in Pepper (Capsicum spp.) (고추 흰가루병에 대한 저항성 재료 탐색)

  • Lee, Ok-Hee;Hwang, Hee-Sook;Kim, Joo-Young;Han, Jeung-Hye;Yoo, Young-Shin;Kim, Byung-Soo
    • Horticultural Science & Technology
    • /
    • v.19 no.1
    • /
    • pp.7-11
    • /
    • 2001
  • A total of 238 accessions of peppers (Capsicum spp.) were evaluated for resistance to powdery mildew (Leveillula taurica (Lev.) Arn) in 1998-1999. KC604, 605, 606 and 608 of C. baccatum, KC616 of C. chinense, and KC638, 640, 641, 642, 643 and 644 of C. pubescens were highly resistant and remained disease-free. KC47-1 (PI244670), KC319-1, KC545, KC320 showed only mild infection compared with susceptible control group, 'Chungok' and others. Therefore, they were considered moderately resistant. Among them, KC47-1, KC319-1 and KC320 are sources of resistance to gray leaf spot caused by Stemphylium spp. while KC47-1 is also resistant to bacterial leaf spot (Xanthomonas campestris pv. vesicatoria (Doidge) Dye). Therefore, they may be used in breeding for multiple resistance to those diseases.

  • PDF

Pathotypes of Bacterial Spot Pathogen Infecting Capsicum Peppers in Korea

  • Wai, Khin Pa Pa;Siddique, Muhammad Irfan;Mo, Hwang-Sung;Yoo, Hee Ju;Byeon, Si-Eun;Jegal, Yoonhyuk;Mekuriaw, Alebel A.;Kim, Byung-Soo
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.428-432
    • /
    • 2015
  • Sixty-seven isolates of bacterial spot pathogen (Xanthomonas spp.) collected from six provinces of Korea were tested for the identification of their pathotypes and determination of their distribution throughout Korea in an effort to genetically manage the disease. Near isogenic lines of Early Calwonder (Capsicum annuum) pepper plants carrying $Bs_1$, $Bs_2$ and $Bs_3$, and PI235047 (C. pubescens) were used as differential hosts. Race P1 was found to be predominant, followed by race P7, and races P3 and P8 were also observed. This is the first report of races P7 and P8 in Korea. The races P7 and P8 were differentiated from the former races P1 and P3, respectively, on the basis of their ability to elicit hypersensitive reactions to PI235047.

Resistance to Two Leaf Spot Diseases of Pepper Genetic Resources Introduced from Mexico and Nepal (멕시코와 네팔도입 고추 유전자원의 두 가지 점무늬병에 대한 저항성)

  • Jo, Eun-Hyeong;Kim, Jeong-Hoon;Jun, Su-Kyung;Lee, Ji-Seon;Kim, Byung-Soo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.23
    • /
    • pp.43-51
    • /
    • 2005
  • Pepper genetic resources consisting of introductions from Mexico and Nepal and susceptible and resistant controls were tested for resistance to gray leaf spot and to bacterial spot by serially inoculating the two disease pathogens, Stemphylium spp. first and Xanthomonas campestris pv. vesicatoria next, with application of fungicide after evaluation of resistance to gray leaf spot first. KC866, KC872, KC902, KC905 were resistant to gray leaf spot in addition to known resistance sources, KC43, KC47, KC220, KC319, KC320, KC380. KC897 was on the top of the resistance sources list, even better than KC177(163192), and was followed by KC889, KC896, KC898, all of which were introductions from Nepal.

  • PDF

Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

  • Back, Chang-Gi;Lee, Seung-Yeol;Lee, Boo-Ja;Yea, Mi-Chi;Kim, Sang-Mok;Kang, In-Kyu;Cha, Jae-Soon;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.212-218
    • /
    • 2015
  • In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP), X. hyacinthi (XH) and X. campestris pv. zantedeschiae (XCZ), based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of $1pg/{\mu}l$ per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.

Biological Control of Plant Diseases With Bacillus Species

  • Li, Debao
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.75-85
    • /
    • 1994
  • Biocontrol is playing a more and more important role in plant disease management. Evidences show that there are optimum prospects for people to apply biocontrol approach to control plant disease or to study the mechanism of antagonism.“The study of Antagonistic Protein of Bacillus spp.to Xanthomonas oryzae pv. oryzae”has been worked in our laboratory since 1986. One hundred and thirty antagonistics bacteria were screened out, most of them belonged to Bacillus spp., and showed very strong inhibitive effect to various plant pathogens. Nine antagonistic proteins (peptides) were purified (P11-I, P11-II, B8, B826-I, B826-II, A30-I, A30-II, G35). Two antagonistic protein related DNA fragments (B826-I, A30-II) were cloned and sequenced. B826-I DNA fragment composed by 905 bp, and it contained two ORF encoding 95, and 54 amino acids, respectively. By using Rifr and Kamr as the selective markers, we found the bacteria could colonize on rice leaf for at least 40 days. In greenhouse the antagonistic bacteria showed certain degree of control efficiency.

  • PDF

Molecular determinants of the host specificity by Xanthomonas spp.

  • Heu, Sunggi;Choi, Min-Seon;Park, Hyoung-Joon;Lee, Seung-Don;Ra, Dong-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2004.10a
    • /
    • pp.65-67
    • /
    • 2004
  • During initial interactions of bacteria with their host plants, most plants recognize the bacterial infections and repel the pathogen by plant defense mechanism. The most active plant defense mechanism is the hypersensitive response (HR) which is the localized induced cell death in the plant at the site of infection by a pathogen. A primary locus induced in gram-negative phytopathogenic bacteria during this initial interaction is the Hrp locus. The Hrp locus is composed of a cluster of genes that encodes the bacteral Type 111 machinery that is involved in the secretion and translocation of effector proteins to the plant cell. DNA sequence analysis of hrp gene in phytopathogenic bacteria has revealed a Hrp pathogenicity is]and (PAI) with a tripartite mosaic structure. For many gram-negative pathogenic bacteria, colonization of the host's tissue depends on the type III protein secretion system (TTSS) which secrets and translocates effector proteins into the host cell. Effectors can be divided into several groups including broad host range effectors, host specific effectors, disease specific effectors, and effectors inhibit host defenses. The role of effectors carrying LRR domain in plant resistance is very elusive since most known plant resistance gene carry LRR domain. Host specific effectors such as several avr gene products are involved in the determination of the host specificity. Almost all the phytopathogenic Xanthomonas spp. carry avrBs1, avrBs2, and avrBs3 homologs. Some strains of X. oryzae pv. oryzae carry more than 10 copies of avrBs3 homologs. However, the functions of all those avr genes in host specificity are not characterized well.;

  • PDF

Identification of Novel Bioactive Hexapeptides Against Phytopathogenic Bacteria Through Rapid Screening of a Synthetic Combinatorial Library

  • Choi, Jae-Hyuk;Moon, Eun-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.792-802
    • /
    • 2009
  • Antimicrobial peptides (AMPs) are considered to be a promising alternative to conventional antibiotics for future generations. We identified four novel hexapeptides with antimicrobial activity: KCM11 (TWWRWW-$NH_2$), KCM12 (KWRWlW-$NH_2$), KCM21 (KWWWRW-$NH_2$), and KRS22 (WRWFIH-$NH_2$), through positional scanning of a synthetic peptide combinatorial library (PS-SCL). The ability of these peptides to inhibit the growth of a variety of bacteria and unicellular fungi was evaluated. KCM11 and KRS22 preferentially inhibited the normal growth of fungal strains, whereas KCM12 and KCM21 were more active against bacterial strains. Bactericidal activity was addressed in a clear zone assay against phytopathogenic bacteria, including Pectobacterium spp., Xanthomonas spp., Pseudomonas spp., etc. KCM21 showed the highest activity and was effective against a wide range of target organisms. Application of KCM21 with inoculation of Pectobacterium carotovorum subsp. carotovorum on detached cabbage leaves resulted in an immune phenotype or a significant reduction in symptom development, depending on the peptide concentration. Cytotoxicity of the four hexapeptides was evaluated in mouse and human epithelial cell lines using an MTT test. The results revealed a lack of cytotoxic effects.

Antimicrobial Compounds Profile During Cheonggukjang Fermentation Against Xanthomonas oryzae pv. oryzae (Xoo)

  • Son, Gun-Hee;Kim, Ji-Young;Muthaiya, Maria John;Lee, Sa-Rah;Kim, Hyang-Yeon;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1147-1150
    • /
    • 2011
  • Xanthomonas oryzae causes rice bacterial blight, which has been reported as one of the most destructive diseases of rice. Metabolites were identified through cheonggukjang, a traditional Korean fermented soybean product fermented by the Bacillus spp., to control the bacteria. HPLC, MS, and UPLC-Q-TOF-MS analyses were performed to identify metabolites responsible for antimicrobial activity. In this analysis, the m/z values of 253.0498, 283.0600, 269.0455, 992.6287, and 1,006.6436 were identified as daidzein, glycitein, genistein, surfactin B, and surfactin A, respectively. The levels of surfactin B and surfactin A were found to be high at 24 h (4.35 ${\mu}g$/ml) and 36 h (3.43 ${\mu}g$/ml) of fermentation, respectively.

Microbiota Communities of Healthy and Bacterial Pustule Diseased Soybean

  • Kim, Da-Ran;Kim, Su-Hyeon;Lee, Su In;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.372-382
    • /
    • 2022
  • Soybean is an important source of protein and for a wide range of agricultural, food, and industrial applications. Soybean is being affected by Xanthomonas citri pv. glycines, a causal pathogen of bacterial pustule disease, result in a reduction in yield and quality. Diverse microbial communities of plants are involved in various plant stresses is known. Therefore, we designed to investigate the microbial community differentiation depending on the infection of X. citri pv. glycines. The microbial community's abundance, diversity, and similarity showed a difference between infected and non-infected soybean. Microbiota community analysis, excluding X. citri pv. glycines, revealed that Pseudomonas spp. would increase the population of the infected soybean. Results of DESeq analyses suggested that energy metabolism, secondary metabolite, and TCA cycle metabolism were actively diverse in the non-infected soybeans. Additionally, Streptomyces bacillaris S8, an endophyte microbiota member, was nominated as a key microbe in the healthy soybeans. Genome analysis of S. bacillaris S8 presented that salinomycin may be the critical antibacterial metabolite. Our findings on the composition of soybean microbiota communities and the key strain information will contribute to developing biological control strategies against X. citri pv. glycines.

Metabolomics-Based Chemotaxonomic Classification of Streptomyces spp. and Its Correlation with Antibacterial Activity

  • Lee, Mee Youn;Kim, Hyang Yeon;Lee, Sarah;Kim, Jeong-Gu;Suh, Joo-Won;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1265-1274
    • /
    • 2015
  • Secondary metabolite-based chemotaxonomic classification of Streptomyces (8 species, 14 strains) was performed using ultraperformance liquid chromatography-quadrupole-time-offlight-mass spectrometry with multivariate statistical analysis. Most strains were generally well separated by grouping under each species. In particular, S. rimosus was discriminated from the remaining sevens pecies (S. coelicolor, S. griseus, S. indigoferus, S. peucetius, S. rubrolavendulae, S. scabiei, and S. virginiae) in partial least squares discriminant analysis, and oxytetracycline and rimocidin were identified as S. rimosus-specific metabolites. S. rimosus also showed high antibacterial activity against Xanthomonas oryzae pv. oryzae, the pathogen responsible for rice bacterial blight. This study demonstrated that metabolite-based chemotaxonomic classification is an effective tool for distinguishing Streptomyces spp. and for determining their species-specific metabolites.