DOI QR코드

DOI QR Code

Antimicrobial Compounds Profile During Cheonggukjang Fermentation Against Xanthomonas oryzae pv. oryzae (Xoo)

  • Son, Gun-Hee (Department of Bioscience and Biotechnology and BioMolecular Informatics Center, Konkuk University) ;
  • Kim, Ji-Young (Department of Bioscience and Biotechnology and BioMolecular Informatics Center, Konkuk University) ;
  • Muthaiya, Maria John (Department of Bioscience and Biotechnology and BioMolecular Informatics Center, Konkuk University) ;
  • Lee, Sa-Rah (Department of Bioscience and Biotechnology and BioMolecular Informatics Center, Konkuk University) ;
  • Kim, Hyang-Yeon (Department of Bioscience and Biotechnology and BioMolecular Informatics Center, Konkuk University) ;
  • Lee, Choong-Hwan (Department of Bioscience and Biotechnology and BioMolecular Informatics Center, Konkuk University)
  • 투고 : 2011.09.30
  • 심사 : 2011.10.08
  • 발행 : 2011.11.28

초록

Xanthomonas oryzae causes rice bacterial blight, which has been reported as one of the most destructive diseases of rice. Metabolites were identified through cheonggukjang, a traditional Korean fermented soybean product fermented by the Bacillus spp., to control the bacteria. HPLC, MS, and UPLC-Q-TOF-MS analyses were performed to identify metabolites responsible for antimicrobial activity. In this analysis, the m/z values of 253.0498, 283.0600, 269.0455, 992.6287, and 1,006.6436 were identified as daidzein, glycitein, genistein, surfactin B, and surfactin A, respectively. The levels of surfactin B and surfactin A were found to be high at 24 h (4.35 ${\mu}g$/ml) and 36 h (3.43 ${\mu}g$/ml) of fermentation, respectively.

키워드

참고문헌

  1. Adhikari, T. B., T. W. Mew, and P. S. Teng. 1994. Progress of bacterial blight on rice cultivars carrying different Xa genes for resistance in the field. Plant Dis. 78: 73-77. https://doi.org/10.1094/PD-78-0073
  2. Beak, J. G., S. M. Shim, D. Y. Kwon, H. K. Choi, C. H. Lee, and Y. S. Kim. 2010. Metabolite profiling of cheonggukjang, a fermented soybean paste, inoculated with various Bacillus strains during fermentation. Biosci. Biotechnol. Biochem. 74: 7860-7868.
  3. Cho, K. M., S. Y. Hong, R. K. Math, J. H. Lee, D. M. Kambiranda, J. M. Kim, et al. 2008. Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chem. 114: 413-419.
  4. Coward, L., M. Smith, M. Kirk, and S. Barnes. 1998. Chemical modification of isoflavones in soyfoods during cooking and processing. Am. J. Clin. Nutr. 68: 1486S-1491S.
  5. Huang, X., J. Suo, and Y. Cui. 2011. Optimization of antimicrobial activity of surfactin and polylysine against Salmonella enteritidis in milk evaluated by a response surface methodology. Foodborne Pathog. Dis. 8: 439-443. https://doi.org/10.1089/fpd.2010.0738
  6. Hwang, M. H., J. H. Lim, H. I. Yun, M. H. Rhee, J. Y. Cho, W. H. Hsu, and S. C. Park. 2005. Surfactin C inhibits the lipopolysaccharide-induced transcription of interleukin-1 and inducible nitric oxide synthase and nitric oxide production in marine RAW 264.7 cells. Biotechol. Lett. 27: 1605-1608. https://doi.org/10.1007/s10529-005-2515-1
  7. Joo, M. H., S. H. Hur, Y. S. Han, and J. Y. Kim. 2007. Isolation, identification, and characterization of Bacillus strains from the traditional korean soybean-fermented food, chungkookjang. J. Appl. Biol. Chem. 50: 202-210.
  8. Kim, J. Y., J. N. Choi, D. J. Kang, G. H. Son, Y. S. Kim, H. K. Choi, et al. 2011. Correlation between antioxidative activities and metabolite changes during cheonggukjang fermentation. Biosci. Biotechnol. Biochem. 75: 732-739. https://doi.org/10.1271/bbb.100858
  9. Kim, S. H., J. L. Yang, and Y. S. Song. 1999. Physiological functions of chungkuk-jang. Food Ind. Nutr. 4: 40-46.
  10. Kim, Y., J. Y. Cho, J. H. Kuk, J. H. Moon, J. I. Cho, Y. C. Kim, and K. H. Park. 2004. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, chungkook-jang. Curr. Microbiol. 48: 312-317. https://doi.org/10.1007/s00284-003-4193-3
  11. Ko, J. H., J. P. Yan, L. Zhu, and Y. P. Qi. 2004. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 137: 65-74.
  12. Kowall, M., J. Vater, B. Kluge, T. Stein, P. Franke, and D. Ziessow. 1998. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J. Colloid Interf. Sci. 204: 1-8. https://doi.org/10.1006/jcis.1998.5558
  13. Lee, B. M., Y. J. Park, D. S. Park, H. W. Kang, J. G. Kim, E. S. Song, et al. 2005. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC 10331, the bacterial blight pathogen of rice. Nucl. Acids Res. 33: 577-586. https://doi.org/10.1093/nar/gki206
  14. Lee, E. J. and J. K. Kim. 2004. Characteristics of taste components of chongkukjang fermented with Bacillus subtilis. Food Sci. Biotechnol. 13: 572-575.
  15. Lee, M. Y., S. Y. Park, K. O. Jung, K. Y. Park, and S. D. Kim. 2005. Quality and functional characteristics of chungkukjang prepared with various Bacillus sp. isolated from traditional chungkukjang. J. Food Sci. 70: M191-M196.
  16. Record, I. R., I. E. Dreosti, and J. K. Mcinerney. 1995. The antioxidant activity of genistein in vitro. J. Nutr. Biochem. 6: 481-485. https://doi.org/10.1016/0955-2863(95)00076-C
  17. Rusin, A., Z. Krawczyk, G. Grynkiewicz, A. Gogler, J. Z. Puchalka, and W. Szeja. 2010. Synthetic derivatives of genistein, their properties and possible applications. Acta Biochim. Pol. 57: 23-34.
  18. Sinchaikul, S., B. Sookkheo, S. Topanuruk, H. F. Juan, S. Phutrakul, and S. T. Chen. 2002. Bioinformatics, functional genomics, and proteomics study of Bacillus sp. J. Chromatogr. B 771: 261-287. https://doi.org/10.1016/S1570-0232(02)00054-5
  19. Song, T. T., S. Hendrich, and P. A. Murphy. 1999. Estrogenic activity of glycitein, a soy isoflavone. J. Agric. Food Chem. 47: 1607-1610. https://doi.org/10.1021/jf981054j
  20. Sugano, M., Y. M. Gatchalian, Y. Arimura, E. Ochiai, and K. Yamada. 1997. Soybean protein lower serum cholesterol levels in hamsters: Effect of debittered undigested fraction. Nutrition 13: 633-639. https://doi.org/10.1016/S0899-9007(97)83005-5
  21. Wang, H. J. and P. A. Murphy. 1994. Isoflavone composition of American and Japanese soybeans in Iowa: Effects of variety, crop year, and location. J. Agric. Food Chem. 42: 1674-1677. https://doi.org/10.1021/jf00044a017
  22. Yang, S. O., P. S. Chang, and J. H. Lee. 2006. Isoflavone distribution and b-glucosidase activity in cheonggukjang, a traditional Korean whole soybean-fermented food. Food Sci. Biotechnol. 15: 96-101.

피인용 문헌

  1. Anti-inflammatory Activity and Mechanism of Surfactin in Lipopolysaccharide-Activated Macrophages vol.38, pp.2, 2011, https://doi.org/10.1007/s10753-014-9986-y
  2. Inhibitory activities against rice pathogens of 8-hydroxy-2,4,6-octatriynamide from Agrocybe sp. vol.32, pp.3, 2011, https://doi.org/10.1007/s11274-015-2004-1
  3. Pumilacidins from the Octocoral-Associated Bacillus sp. DT001 Display Anti-Proliferative Effects in Plasmodium falciparum vol.23, pp.9, 2011, https://doi.org/10.3390/molecules23092179
  4. Screening and identification of Aspergillus activity against Xanthomonas oryzae pv. oryzae and analysis of antimicrobial components vol.57, pp.7, 2011, https://doi.org/10.1007/s12275-019-8330-5
  5. Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang vol.22, pp.11, 2011, https://doi.org/10.3390/ijms22115746