Browse > Article
http://dx.doi.org/10.4014/jmb.0809.497

Identification of Novel Bioactive Hexapeptides Against Phytopathogenic Bacteria Through Rapid Screening of a Synthetic Combinatorial Library  

Choi, Jae-Hyuk (Department of Molecular Science and Technology Ajou University)
Moon, Eun-Pyo (Department of Biological Sciences, Ajou University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.8, 2009 , pp. 792-802 More about this Journal
Abstract
Antimicrobial peptides (AMPs) are considered to be a promising alternative to conventional antibiotics for future generations. We identified four novel hexapeptides with antimicrobial activity: KCM11 (TWWRWW-$NH_2$), KCM12 (KWRWlW-$NH_2$), KCM21 (KWWWRW-$NH_2$), and KRS22 (WRWFIH-$NH_2$), through positional scanning of a synthetic peptide combinatorial library (PS-SCL). The ability of these peptides to inhibit the growth of a variety of bacteria and unicellular fungi was evaluated. KCM11 and KRS22 preferentially inhibited the normal growth of fungal strains, whereas KCM12 and KCM21 were more active against bacterial strains. Bactericidal activity was addressed in a clear zone assay against phytopathogenic bacteria, including Pectobacterium spp., Xanthomonas spp., Pseudomonas spp., etc. KCM21 showed the highest activity and was effective against a wide range of target organisms. Application of KCM21 with inoculation of Pectobacterium carotovorum subsp. carotovorum on detached cabbage leaves resulted in an immune phenotype or a significant reduction in symptom development, depending on the peptide concentration. Cytotoxicity of the four hexapeptides was evaluated in mouse and human epithelial cell lines using an MTT test. The results revealed a lack of cytotoxic effects.
Keywords
AMP; synthetic; antimicrobial peptide; phytopathogenic bacteria; antibiotics; infection control; cytotoxicity; MTT test;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Agrios, G. N., 2005. Plant Pathology, 4th Ed. Academic Press, London
2 Blondelle, S. E., E. Crooks, R. Aligue, N. Agell, O. Bachs, V. Esteve, R. Tejero, B. Celda, M. T. Pastor, and E. Perez-Paya. 2000. Novel, potent calmodulin antagonists derived from an all- D hexapeptide combinatorial library that inhibits in vivo cell proliferation: Activity and structural characterization. J. Pept. Res. 55: 148-162   DOI   ScienceOn
3 Blondelle, S. E. and K. Lohner. 2000. Combinatorial libraries: A tool to design antimicrobial and antifungal peptide analogues having lytic specificities for structure-activity relationship studies. Biopolymers 55: 74-87   DOI   ScienceOn
4 Cabrefiga, J. and E. Montesinos. 2005. Analysis of Aggressiveness of Erwinia mylovora Using Disease-Dose and Time Relationships. p. 1430-1437   DOI   ScienceOn
5 Heu, S., J. Oh, Y. Kang, S. Ryu, S. K. Cho, Y. Cho, and M. Cho. 2001. gly Gene cloning and expression and purification of glycinecin A, a bacteriocin produced by Xanthomonas campestris pv. glycines 8ra. Appl. Environ. Microbiol. 67: 4105-4110   DOI   ScienceOn
6 Hong, S. Y., J. E. Oh, M. Kwon, M. J. Choi, J. H. Lee, B. L. Lee, H. M. Moon, and K. H. Lee. 1998. Identification and characterization of novel antimicrobial decapeptides generated by combinatorial chemistry. Antimicrob. Agents Chemother. 42: 2534-2541   PUBMED   ScienceOn
7 Hughes, S. R., P. F. Dowd, R. E. Hector, T. Panavas, D. E. Sterner, N. Qureshi, et al. 2008. Lycotoxin-1 insecticidal peptide optimized by amino acid scanning mutagenesis and expressed as a coproduct in an ethanologenic Saccharomyces cerevisiae strain. J. Pept. Sci. 14: 1039-1050   DOI   ScienceOn
8 Kyte, J. and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132   DOI   PUBMED
9 Lopez-Garcia, B., W. Ubhayasekera, R. L. Gallo, and J. F. Marcos. 2007. Parallel evaluation of antimicrobial peptides derived from the synthetic PAF26 and the human LL37. Biochem. Biophys. Res. Commun. 356: 107-113   DOI   ScienceOn
10 Marcos, J. F., R. N. Beachy, R. A. Houghten, S. E. Blondelle, and E. Perez-Paya. 1995. Inhibition of a plant virus infection by analogs of melittin. Proc. Natl. Acad. Sci. U.S.A. 92: 12466- 12469   DOI   ScienceOn
11 Montesinos, E. 2007. Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett. 270: 1-11   DOI   PUBMED   ScienceOn
12 Rajasekaran, K., J. W. Cary, J. M. Jaynes, and T. E. Cleveland. 2005. Disease resistance conferred by the expression of a gene encoding a synthetic peptide in transgenic cotton (Gossypium hirsutum L.) plants. Plant Biotechnol. J. 3: 545-554   DOI   ScienceOn
13 Matsuzaki, K. 1999. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. Biochim. Biophys. Acta 1462: 1-10   DOI   PUBMED   ScienceOn
14 Vidaver, A. K. 2002. Uses of antimicrobials in plant agriculture. Clin. Infect. Dis. 34 Suppl 3: S107-S110   DOI
15 Yedery, R. D. and K. V. Reddy. 2005. Antimicrobial peptides as microbicidal contraceptives: Prophecies for prophylactics - a mini review. Eur. J. Contracept. Reprod. Health Care 10: 32-42   DOI   ScienceOn
16 Sundin, G. W. and C. L. Bender. 1993. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 59: 1018- 1024   PUBMED   ScienceOn
17 Blondelle, S. E., E. Perez-Paya, and R. A. Houghten. 1996. Synthetic combinatorial libraries: Novel discovery strategy for identification of antimicrobial agents. Antimicrob. Agents Chemother. 40: 1067-1071   PUBMED   ScienceOn
18 Chen, Y., M. T. Guarnieri, A. I. Vasil, M. L. Vasil, C. T. Mant, and R. S. Hodges. 2007. Role of peptide hydrophobicity in the mechanism of action of alpha-helical antimicrobial peptides. Antimicrob. Agents Chemother. 51: 1398-1406   DOI   ScienceOn
19 Bader, M. W., S. Sanowar, M. E. Daley, A. R. Schneider, U. Cho, W. Xu, R. E. Klevit, H. Le Moual, and S. I. Miller. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122: 461-472   DOI   ScienceOn
20 Brogden, K. A. 2005. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238-250   DOI   PUBMED   ScienceOn
21 Blondelle, S. E. and R. A. Houghten. 1996. Novel antimicrobial compounds identified using synthetic combinatorial library technology. Trends Biotechnol. 14: 60-65   DOI   ScienceOn
22 Lopez-Garcia, B., J. F. Marcos, C. Abad, and E. Perez-Paya. 2004. Stabilisation of mixed peptide/lipid complexes in selective antifungal hexapeptides. Biochim. Biophys. Acta 1660: 131- 137   DOI   ScienceOn
23 Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55-63   DOI   PUBMED   ScienceOn
24 Hancock, R. E. and H. G. Sahl. 2006. Antimicrobial and hostdefense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551-1557   DOI   ScienceOn
25 Fields, G. B. and R. L. Noble. 1990. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int. J. Pept. Protein Res. 35: 161-214   DOI   PUBMED
26 Feng, Y., N. Huang, Q. Wu, L. Bao, and B. Y. Wang. 2005. Alpha-helical domain is essential for antimicrobial activity of high mobility group nucleosomal binding domain 2 (HMGN2). Acta Pharmacol. Sin. 26: 1087-1092   DOI   ScienceOn
27 Blondelle, S. E., C. Pinilla, and C. Boggiano. 2003. Synthetic combinatorial libraries as an alternative strategy for the development of novel treatments for infectious diseases. Methods Enzymol. 369: 322-344   DOI   PUBMED   ScienceOn
28 Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395   DOI   PUBMED   ScienceOn
29 Yeaman, M. R. and N. Y. Yount. 2003. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55: 27-55   DOI   ScienceOn
30 Zhao, C., T. Nguyen, L. M. Boo, T. Hong, C. Espiritu, D. Orlov, W. Wang, A. Waring, and R. I. Lehrer. 2001. RL-37, an alpha-helical antimicrobial peptide of the rhesus monkey. Antimicrob. Agents Chemother. 45: 2695-2702   DOI   ScienceOn
31 Houghten, R. A. 2000. Parallel array and mixture-based synthetic combinatorial chemistry: Tools for the next millennium. Annu. Rev. Pharmacol. Toxicol. 40: 273-282   DOI   PUBMED   ScienceOn
32 Munoz, A., B. Lopez-Garcia, E. Perez-Paya, and J. F. Marcos. 2007. Antimicrobial properties of derivatives of the cationic tryptophan-rich hexapeptide PAF26. Biochem. Biophys. Res. Commun. 354: 172-177   DOI   ScienceOn
33 Ostresh, J. M., G. M. Husar, S. E. Blondelle, B. Dorner, P. A. Weber, and R. A. Houghten. 1994. 'Libraries from libraries': Chemical transformation of ombinatorial libraries to extend the range and repertoire of chemical diversity. Proc. Natl. Acad. Sci. U.S.A. 91: 11138-11142   DOI   ScienceOn
34 Reddy, K. V., R. D. Yedery, and C. Aranha. 2004. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents 24: 536-547   DOI   ScienceOn
35 Wan, Y. K., S. P. Tian, and G. Z. Qin. 2003. Enhancement of biocontrol activity of yeasts by adding sodium bicarbonate or ammonium molybdate to control postharvest disease of jujube fruits. Lett. Appl. Microbiol. 37: 249-253   DOI   ScienceOn
36 Lopez-Garcia, B., L. Gonzalez-Candelas, E. Perez-Paya, and J. F. Marcos. 2000. Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits. Mol. Plant Microbe Interact. 13: 837-846   DOI   ScienceOn
37 Lopez-Garcia, B., E. Perez-Paya, and J. F. Marcos. 2002. Identification of novel hexapeptides bioactive against phytopathogenic fungi through screening of a synthetic peptide combinatorial library. Appl. Environ. Microbiol. 68: 2453-2460   DOI   ScienceOn