• 제목/요약/키워드: Xanthomonas spp.

검색결과 25건 처리시간 0.031초

고추 흰가루병에 대한 저항성 재료 탐색 (A Search for Sources of Resistance to Powdery Mildew (Leveillula taurica (Lév.) Arn) in Pepper (Capsicum spp.))

  • 이옥희;황희숙;김주영;한정혜;유영신;김병수
    • 원예과학기술지
    • /
    • 제19권1호
    • /
    • pp.7-11
    • /
    • 2001
  • 1998-1999년도에 걸쳐 총 238점의 고추 유전자원에 대하여 흰가루병에 대한 저항성을 검정한 결과, Capsicum baccatum에 속하는 KC604, 605, 606, 608, C. chinense에 속하는 KC616, C. pubescens에 속하는 KC638, 640, 641, 642, 643, 644가 발병하지 않을 정도로 고도의 저항성을 나타내었으며 C. annuum에 속하는 KC47-1(PI244670), KC319-1, KC545, KC320는 경미하게 발병하여 다소 저항성으로 나타났다. KC47-1, KC319-1, KC320은 Stemphylium spp.에 의한 고추 잎점무늬병에 저항성이며, 그 중 KC 47-1은 더뎅이병(Xanthomonas campestris pv. vesicatoria)에도 저항성이어서 이들 병에 복합저항성 육성도 가능할 것으로 기대된다.

  • PDF

Pathotypes of Bacterial Spot Pathogen Infecting Capsicum Peppers in Korea

  • Wai, Khin Pa Pa;Siddique, Muhammad Irfan;Mo, Hwang-Sung;Yoo, Hee Ju;Byeon, Si-Eun;Jegal, Yoonhyuk;Mekuriaw, Alebel A.;Kim, Byung-Soo
    • The Plant Pathology Journal
    • /
    • 제31권4호
    • /
    • pp.428-432
    • /
    • 2015
  • Sixty-seven isolates of bacterial spot pathogen (Xanthomonas spp.) collected from six provinces of Korea were tested for the identification of their pathotypes and determination of their distribution throughout Korea in an effort to genetically manage the disease. Near isogenic lines of Early Calwonder (Capsicum annuum) pepper plants carrying $Bs_1$, $Bs_2$ and $Bs_3$, and PI235047 (C. pubescens) were used as differential hosts. Race P1 was found to be predominant, followed by race P7, and races P3 and P8 were also observed. This is the first report of races P7 and P8 in Korea. The races P7 and P8 were differentiated from the former races P1 and P3, respectively, on the basis of their ability to elicit hypersensitive reactions to PI235047.

멕시코와 네팔도입 고추 유전자원의 두 가지 점무늬병에 대한 저항성 (Resistance to Two Leaf Spot Diseases of Pepper Genetic Resources Introduced from Mexico and Nepal)

  • 조은형;김정훈;전수경;이지선;김병수
    • Current Research on Agriculture and Life Sciences
    • /
    • 제23권
    • /
    • pp.43-51
    • /
    • 2005
  • 멕시코와 네팔에서 수집한 고추 유전자원 50점과 이병성 및 저항성 대조품종에 Stemphylium solani와 S. lycopersici 의 혼합접종으로 흰별무늬병(gray leaf spot)에 대한 저항성을 검정하고, 살균제를 살포하여 회복시킨 다음 다시 Xanthomonas campestris pv. vesicatoria를 접종하여 더뎅이병에 대한 저항성을 검정하였다 더뎅이병에는 KC866, KC872, KC902, KC905이 이미 알려진 KC43, KC47, KC220, KC319, KC320, KC380 등과 함께 저항성으로 나타났다. 더뎅이병, bacterial spot)에는 KC897이 이미 저항성으로 보고된 KC177(PI163192)보다 발병이 적어 가장 우수한 것으로 나타났으며 이어서 네팔에서 도입된 KC889, KC896, KC898이 저항성으로 나타났다.

  • PDF

Development of a Species-specific PCR Assay for Three Xanthomonas Species, Causing Bulb and Flower Diseases, Based on Their Genome Sequences

  • Back, Chang-Gi;Lee, Seung-Yeol;Lee, Boo-Ja;Yea, Mi-Chi;Kim, Sang-Mok;Kang, In-Kyu;Cha, Jae-Soon;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • 제31권3호
    • /
    • pp.212-218
    • /
    • 2015
  • In this study, we developed a species-specific PCR assay for rapid and accurate detection of three Xanthomonas species, X. axonopodis pv. poinsettiicola (XAP), X. hyacinthi (XH) and X. campestris pv. zantedeschiae (XCZ), based on their draft genome sequences. XAP, XH and XCZ genomes consist of single chromosomes that contain 5,221, 4,395 and 7,986 protein coding genes, respectively. Species-specific primers were designed from variable regions of the draft genome sequence data and assessed by a PCR-based detection method. These primers were also tested for specificity against 17 allied Xanthomonas species as well as against the host DNA and the microbial community of the host surface. Three primer sets were found to be very specific and no amplification product was obtained with the host DNA and the microbial community of the host surface. In addition, a detection limit of $1pg/{\mu}l$ per PCR reaction was detected when these primer sets were used to amplify corresponding bacterial DNAs. Therefore, these primer sets and the developed species-specific PCR assay represent a valuable, sensitive, and rapid diagnostic tool that can be used to detect three specific pathogens at early stages of infection and may help control diseases.

Biological Control of Plant Diseases With Bacillus Species

  • Li, Debao
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1994년도 Proceedings of International Symposium on BIOLOGICAL CONTROL OF PLANT DISEASES Korean Society of Plant Pathology
    • /
    • pp.75-85
    • /
    • 1994
  • Biocontrol is playing a more and more important role in plant disease management. Evidences show that there are optimum prospects for people to apply biocontrol approach to control plant disease or to study the mechanism of antagonism.“The study of Antagonistic Protein of Bacillus spp.to Xanthomonas oryzae pv. oryzae”has been worked in our laboratory since 1986. One hundred and thirty antagonistics bacteria were screened out, most of them belonged to Bacillus spp., and showed very strong inhibitive effect to various plant pathogens. Nine antagonistic proteins (peptides) were purified (P11-I, P11-II, B8, B826-I, B826-II, A30-I, A30-II, G35). Two antagonistic protein related DNA fragments (B826-I, A30-II) were cloned and sequenced. B826-I DNA fragment composed by 905 bp, and it contained two ORF encoding 95, and 54 amino acids, respectively. By using Rifr and Kamr as the selective markers, we found the bacteria could colonize on rice leaf for at least 40 days. In greenhouse the antagonistic bacteria showed certain degree of control efficiency.

  • PDF

Molecular determinants of the host specificity by Xanthomonas spp.

  • Heu, Sunggi;Choi, Min-Seon;Park, Hyoung-Joon;Lee, Seung-Don;Ra, Dong-Soo
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2004년도 The 2004 KSPP Annual Meeting & International Symposium
    • /
    • pp.65-67
    • /
    • 2004
  • During initial interactions of bacteria with their host plants, most plants recognize the bacterial infections and repel the pathogen by plant defense mechanism. The most active plant defense mechanism is the hypersensitive response (HR) which is the localized induced cell death in the plant at the site of infection by a pathogen. A primary locus induced in gram-negative phytopathogenic bacteria during this initial interaction is the Hrp locus. The Hrp locus is composed of a cluster of genes that encodes the bacteral Type 111 machinery that is involved in the secretion and translocation of effector proteins to the plant cell. DNA sequence analysis of hrp gene in phytopathogenic bacteria has revealed a Hrp pathogenicity is]and (PAI) with a tripartite mosaic structure. For many gram-negative pathogenic bacteria, colonization of the host's tissue depends on the type III protein secretion system (TTSS) which secrets and translocates effector proteins into the host cell. Effectors can be divided into several groups including broad host range effectors, host specific effectors, disease specific effectors, and effectors inhibit host defenses. The role of effectors carrying LRR domain in plant resistance is very elusive since most known plant resistance gene carry LRR domain. Host specific effectors such as several avr gene products are involved in the determination of the host specificity. Almost all the phytopathogenic Xanthomonas spp. carry avrBs1, avrBs2, and avrBs3 homologs. Some strains of X. oryzae pv. oryzae carry more than 10 copies of avrBs3 homologs. However, the functions of all those avr genes in host specificity are not characterized well.;

  • PDF

Identification of Novel Bioactive Hexapeptides Against Phytopathogenic Bacteria Through Rapid Screening of a Synthetic Combinatorial Library

  • Choi, Jae-Hyuk;Moon, Eun-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권8호
    • /
    • pp.792-802
    • /
    • 2009
  • Antimicrobial peptides (AMPs) are considered to be a promising alternative to conventional antibiotics for future generations. We identified four novel hexapeptides with antimicrobial activity: KCM11 (TWWRWW-$NH_2$), KCM12 (KWRWlW-$NH_2$), KCM21 (KWWWRW-$NH_2$), and KRS22 (WRWFIH-$NH_2$), through positional scanning of a synthetic peptide combinatorial library (PS-SCL). The ability of these peptides to inhibit the growth of a variety of bacteria and unicellular fungi was evaluated. KCM11 and KRS22 preferentially inhibited the normal growth of fungal strains, whereas KCM12 and KCM21 were more active against bacterial strains. Bactericidal activity was addressed in a clear zone assay against phytopathogenic bacteria, including Pectobacterium spp., Xanthomonas spp., Pseudomonas spp., etc. KCM21 showed the highest activity and was effective against a wide range of target organisms. Application of KCM21 with inoculation of Pectobacterium carotovorum subsp. carotovorum on detached cabbage leaves resulted in an immune phenotype or a significant reduction in symptom development, depending on the peptide concentration. Cytotoxicity of the four hexapeptides was evaluated in mouse and human epithelial cell lines using an MTT test. The results revealed a lack of cytotoxic effects.

Antimicrobial Compounds Profile During Cheonggukjang Fermentation Against Xanthomonas oryzae pv. oryzae (Xoo)

  • Son, Gun-Hee;Kim, Ji-Young;Muthaiya, Maria John;Lee, Sa-Rah;Kim, Hyang-Yeon;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권11호
    • /
    • pp.1147-1150
    • /
    • 2011
  • Xanthomonas oryzae causes rice bacterial blight, which has been reported as one of the most destructive diseases of rice. Metabolites were identified through cheonggukjang, a traditional Korean fermented soybean product fermented by the Bacillus spp., to control the bacteria. HPLC, MS, and UPLC-Q-TOF-MS analyses were performed to identify metabolites responsible for antimicrobial activity. In this analysis, the m/z values of 253.0498, 283.0600, 269.0455, 992.6287, and 1,006.6436 were identified as daidzein, glycitein, genistein, surfactin B, and surfactin A, respectively. The levels of surfactin B and surfactin A were found to be high at 24 h (4.35 ${\mu}g$/ml) and 36 h (3.43 ${\mu}g$/ml) of fermentation, respectively.

Microbiota Communities of Healthy and Bacterial Pustule Diseased Soybean

  • Kim, Da-Ran;Kim, Su-Hyeon;Lee, Su In;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.372-382
    • /
    • 2022
  • Soybean is an important source of protein and for a wide range of agricultural, food, and industrial applications. Soybean is being affected by Xanthomonas citri pv. glycines, a causal pathogen of bacterial pustule disease, result in a reduction in yield and quality. Diverse microbial communities of plants are involved in various plant stresses is known. Therefore, we designed to investigate the microbial community differentiation depending on the infection of X. citri pv. glycines. The microbial community's abundance, diversity, and similarity showed a difference between infected and non-infected soybean. Microbiota community analysis, excluding X. citri pv. glycines, revealed that Pseudomonas spp. would increase the population of the infected soybean. Results of DESeq analyses suggested that energy metabolism, secondary metabolite, and TCA cycle metabolism were actively diverse in the non-infected soybeans. Additionally, Streptomyces bacillaris S8, an endophyte microbiota member, was nominated as a key microbe in the healthy soybeans. Genome analysis of S. bacillaris S8 presented that salinomycin may be the critical antibacterial metabolite. Our findings on the composition of soybean microbiota communities and the key strain information will contribute to developing biological control strategies against X. citri pv. glycines.

Metabolomics-Based Chemotaxonomic Classification of Streptomyces spp. and Its Correlation with Antibacterial Activity

  • Lee, Mee Youn;Kim, Hyang Yeon;Lee, Sarah;Kim, Jeong-Gu;Suh, Joo-Won;Lee, Choong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1265-1274
    • /
    • 2015
  • Secondary metabolite-based chemotaxonomic classification of Streptomyces (8 species, 14 strains) was performed using ultraperformance liquid chromatography-quadrupole-time-offlight-mass spectrometry with multivariate statistical analysis. Most strains were generally well separated by grouping under each species. In particular, S. rimosus was discriminated from the remaining sevens pecies (S. coelicolor, S. griseus, S. indigoferus, S. peucetius, S. rubrolavendulae, S. scabiei, and S. virginiae) in partial least squares discriminant analysis, and oxytetracycline and rimocidin were identified as S. rimosus-specific metabolites. S. rimosus also showed high antibacterial activity against Xanthomonas oryzae pv. oryzae, the pathogen responsible for rice bacterial blight. This study demonstrated that metabolite-based chemotaxonomic classification is an effective tool for distinguishing Streptomyces spp. and for determining their species-specific metabolites.