• Title/Summary/Keyword: Xanthomonas campestris

Search Result 124, Processing Time 0.023 seconds

Host and Non-Host Disease Resistances of Kimchi Cabbage Against Different Xanthomonas campestris Pathovars

  • Lee, Young-Hee;Hong, Jeum-Kyu
    • The Plant Pathology Journal
    • /
    • v.28 no.3
    • /
    • pp.322-329
    • /
    • 2012
  • This study was conducted to investigate host and non-host disease resistances of kimchi cabbage plants to bacterial infection. Kimchi cabbage leaves responded differently to infections with a virulent strain of Xanthomonas campestris pv. campestris (Xcc) 8004 and two strains (85-10 and Bv5-4a.1) of non-host bacteria X. campestris pv. vesicatoria (Xcv). Non-host bacteria triggered a rapid tissue collapse of the leaves showing as brown coloration at the infected sites, highly increased ion leakage, lipid peroxidation and accumulation of UV-stimulated autofluorescence materials at the inoculated sites. During the observed interactions, bacterial proliferations within the leaf tissues were significantly different. Bacterial number of Xcc 8004 progressively increased within the inoculated leaf tissues over time, while growths of two non-host bacteria Xcv strains were distinctly limited. Expressions of pathogenesis-related genes, such as GST1, PR1, BGL2, VSP2, PR4 and LOX2, were differentially induced by host and non-host bacterial infections of X. campestris pathovars. These results indicated that rapid host cellular responses to the non-host bacterial infections may contribute to an array of defense reactions to the non-host bacterial invasion.

Isolation and characterization of native plasmids carrying avirulence genes in Xanthomonas spp.

  • Sunggi hen;Lee, Seungdon;Jaewoong Jee;Park, Minsun
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.71.1-71
    • /
    • 2003
  • Most major plant pathogenic bacteria in Korea belong to Xanthomonas spp.. Xanthomonas oryzae pv. oryzae is a major pathogen in rice, X. campestris pv. vesicatoria in pepper, X. axonopodis pv. giycines in soybean, X. campestris pv. campestris in cabbage, and X. axonoposid pv. citri in tangerin. Host specificity of the bacterial pathogen depends on the avirulence gene in the pathogen and the corresponding resistance gene in host plants. Many avirulence genes in bacteiral pathogen located on the native plasmids. However, the presence of the native plasmids in Xanthomonas spp. was not investigated well. In order to study the host specificity, we isolated native plasmids from Xanthomonas spp. and compared those plasmids each other, The presence of the native plasmids and the characteristics of the plasmids depended on the bacterial strains. In the X. axonopodis pv. glycines, most strains carried native plasmids but some strains did not. Some strains carry about 60 kb native plasmids including 3 different aviurlence genes. We will discuss the characteristics of the native plasmids isolated from the Xanthomonas spp.

  • PDF

Population Density Changes of Bacteria Causing Soybean Sprout Rot on Soybean Pods (콩 꼬투리에서 서식하는 세균 및 콩나물 부패균의 밀도 변화)

  • 이은정;한광섭;심명용;최재을
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.41-45
    • /
    • 1999
  • Bacterial population densities on soybean pods from Chungnam province ranges 105~106 CFU/$\textrm{cm}^2$, whereas those of bacteria causing sprout rot ranged 0~103 CFU/$\textrm{cm}^2$. Erwinia chrysanthemi, Xanthomonas campestris pv. glycines, Staphylococcus sp., and Micrococcus sp. were identified as pathogenic bacteria causing soybean sprout rot. The population density of X. campestris pv. glycines was higher than those of other bacteria.

  • PDF

Differential Induction of Pathogenesis-Related Proteins in the Compatible and Incompatible Interactions of Tomato Leaves with Xanthomonas campestris pv. vesicatoria (Xanthomonas campestris pv. vesicatoria와 토마토잎의 친화적, 불친화적 반응에서 병생성관련 단백질의 유도)

  • 김정동;황병국
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.53-60
    • /
    • 1995
  • Inoculation with the compatible strain Ds 1 of Xanthomonas campestris pv. vesicatoria caused brownish ad water-soaked lesions, but incompatible strain Bv5-4a produced hypersensitive symptoms with local necrosis on tomato (cv. Kwangyang) leaves. Bacterial populations of the compatible strains Ds 1 propagated more greatly than the incompatible strain Bv5-4a at the frist onset, but no differences were observed 5 days after inoculation. The bacterial infection induced the synthesis and accumulation of soluble proteins in tomato leaves, especially in the incompatible interaction. Native-polyacrylamide gel electrophoresis distinguished the soluble proteins in the tomato leaves infected by the compatible or incompatible strains. A protein of low molecular weight occurred only in the incompatible interaction. Some pathogenesis-related (PR) proteins, especially the 15, 18, 23, 26 and 54 kDa proteins, were detected only in the infected tomato leaves. In the two-dimensional electrophoresis, some proteins with different molecular weights (Mr. 21∼29 kDa) and the pI 8∼9 appeared more distinctly only in the incompatible interaction. These data suggest that the de novo synthesis of some PR proteins in tomato may be significant in defense against X. c. pv. vesicatoria.

  • PDF

Influence of Growth Conditions for the Production of Bacteriocin, Glycinecin, Produced by Xanthmonas campestris pv. glycines 8ra (콩 불마름병균의 생장 조건이 박테리오신인 glycinecin의 생성에 미치는 영향)

  • Woo Jung;Sunggi Heu;Cho, Yong-Sup
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.376-381
    • /
    • 1998
  • Xanthomonas campestris pv. glycines 8ra causes bacterial pustule disease on susceptible soybean leaves and produces a bacteriocin, named glycinecin, against related bacteria such as Xanthomonas campestris pv. vesicatoria. The antimicrobial activity of the glycinecin was effective to most tested Xanthomonas species. X. c. pv. glycines 8ra was able to produce the glycinecin in liquid media as well as solid media. Maximal productivity of glycinecin was obtained at 3$0^{\circ}C$ in the early stationary phase of growth of the X. c. pv. glycines 8ra. The production of glycinecin was not dependent on the initial inoculum level but on cell density. Glycinecin was very sensitive to proteolytic enzymes such as trypsin and proteinase K but resistant to DNase and RNase. The culture supernatant of X. c. pv. glycines 8ra retained some of its antimicrobial activity after 15 min at 6$0^{\circ}C$. It is stable at wide range of pH. The glycinecin showed the bactericidal activity after the adsorption of the glycinecin to the sensitive bacterial cell.

  • PDF

A Semiselective Medium for the Isolation of Xanthomonas campestris pv. oryzae from Rice Seed (벼 종자에서 Xanthomonas campestris pv. oryzae의 분리를 위한 선택배지)

  • 김형무;송완엽;소인영;이두구
    • Korean Journal Plant Pathology
    • /
    • v.10 no.1
    • /
    • pp.13-17
    • /
    • 1994
  • A semiselective agar medium (XCO) was developed for the isolation of bacterial blight pathogen, Xanthomonas campestris pv. oryzae, from rice seed. The medium contained yeast extract 1.0 g, peptone 2.0 g, sucrose 5.0 g, sodium glutamate 1.0 g, FeSO4.7H2O 0.05 g, Fe.EDTA 1 mg, cephalexin 20 mg, Evan blue (0.1%) 1.5 ml, bromcresol purple (0.1%) 2.5ml, cycloheximide 100 mg and agar 15.0 g per liter. Colonies of X. c. pv. oryzae were 4~5 mm in diameter, smooth, round, blue (darker center) and convex after 6 days incubation at 28$^{\circ}C$. The recovery of 6 isolates of X. c. pv. oryzae on the XOC medium ranged from 81% to 120% (mean 98.2%) in comparison to Wakimoto's medium. The number of saprophytic bacteria from 10 rice seed lots on XCO medium was reduced to 70.4% of that on Wakimoto's medium. The recovery of X. c. pv. oryzae added to rice seed on XOC medium ranged from 67% to 87% (mean 75.6%) of that on Wakimoto's medium.

  • PDF

Genetic Differentiation of Strains of Xanthomonas campestris pv. vesicatoria by Random Amplified Polymorphic DNA (RAPD) (Random Amplified Polymorphic DNA (RAPD)를 이용한 고추 더뎅이병균 균주의 유전적 분류)

  • 정희정;김가영;고영진;노일섭;황병국
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.5-12
    • /
    • 1997
  • Genetic diversity of forty-four strains of Xanthomonas campestris pv. vesicatoria from diverse geographic origins was investigated using random amplified polymorphic DNA (RAPD) of genomic DNA. One hundred and thirty-seven amplified fragments were produced by polymerase chain reaction with a set of 14 random primers, and the sizes of amplified DNA fragments ranged approximately from 0.3 to 3.2 kb. Cluster analysis of genetic similarity among the strains generated the dendrogram that clearly separated all strains from each other. The 44 strains of X. campestris pv. vesicatoria were classified into 4 major genomic DNA RAPD groups and 15 subgroups at the genetic similarity of 0.60 and 0.92, respectively. The strains from foreign countries formed discrete subgroups, but the United States strain 87-77 clustered closely with some of Korean strains together. Thirty-nine Korean strains were classified into 11 subgroups, and especially Masan strain Ms93-1 clustered distinctly far from the other Korean strains. RAPD polymorphism suggests strongly the occurrence of genetic differentiation of X. campestris pv. vesicatoria and the existence of genetically distinctive subgroups among the populations in Korea.

  • PDF

Population Density Changes of Bacteria and Soybean Sprout Rotting Bacteria on Soybean Leaves (콩 잎에 서식하는 세균 및 콩나물 부패균의 밀도 변화)

  • 최재을;이은정;신철우
    • Korean Journal of Plant Resources
    • /
    • v.12 no.2
    • /
    • pp.152-160
    • /
    • 1999
  • Bacterial population density on soybean leaves was $10^2~10^5CFU/cm^2$. Bacterial population density was increased by progress of plant growth stage. Population density of soybean sprout rotting bacteria on soybean leaves was $0~10^3CFU/cm^2$. Population density of soybean sprouts rotting bacteria was related to cultivating area, but not related to plant growth stage. Cultivar and population density of soybean sprout rotting bacteria were less corelated, and varied by plant growth stages and plant parts. Erwina cypripedii, E. carotovora subsp. carotovora, Xanthomonas campestris pv. glycines, Staphylococcus sp., and Micrococcus sp. were identified as pathogenic bacteria causing soybean sprout rot. In generally population density of E. cypripedii, E. carotovora subsp. carotovora, Micrococcus sp., and X. campestris pv. glycines were high.

  • PDF

Post-Infectional Biochemical Changes in Mulberry Due to Xanthomonas campestris pv. mori Induced Bacterial Leaf Spot

  • Maji, M.D.;Sengupta, T.;Das, C.;Urs, S.Raje
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.255-259
    • /
    • 2004
  • Post-infectional biochemical changes due to Xanthomonas campestris pv. mori (Xcm) infection in five elite mulberry varieties viz., $S_1$, $S_{1635}$, $V_1$, RF $S_{175}$ and JRH was studied under inoculated condition. It was revealed that total soluble sugar and protein content was significantly declined in all the varieties due to X. campestris infection. Total phenol content was at par prior to inoculation in all varieties, but it was significantly increased in $S_1$, RF $S_{175}$, $S_{1635}$ and JRH 7 days after inoculation. The correlation coefficient (r) between total soluble sugar and total phenol content was found positive (r = 0.825) and statistically significant. Similarly, correlation coefficient (r) between total soluble protein and phenol content was found positive (r = 0.897) and statistically significant. The present study indicates that X. campestris infected leaves are nutritionally inferior in quality and the duration of phenol production in a mulberry variety play decisive role on disease resistance.nce.

Molecular Marker Development for the Rapid Differentiation of Black Rot Causing Xanthomonas campestris pv. campestris Race 7

  • Yeo-Hyeon Kim;Sopheap Mao;Nihar Sahu;Uzzal Somaddar;Hoy-Taek Kim;Masao Watanabe;Jong-In Park
    • The Plant Pathology Journal
    • /
    • v.39 no.5
    • /
    • pp.494-503
    • /
    • 2023
  • Xanthomonas campestris pv. campestris (Xcc) is a plant pathogen of Brassica crops that causes black rot disease throughout the world. At present, 11 physiological races of Xcc (races 1-11) have been reported. The conventional method of using differential cultivars for Xcc race detection is not accurate and it is laborious and time-consuming. Therefore, the development of specific molecular markers has been used as a substitute tool because it offers an accurate and reliable result, particularly a quick diagnosis of Xcc races. Previously, our laboratory has successfully developed race-specific molecular markers for Xcc races 1-6. In this study, specific molecular markers to identify Xcc race 7 have been developed. In the course of study, whole genome sequences of several Xcc races, X. campestris pv. incanae, X. campestris pv. raphani, and X. campestris pv. vesicatoria were aligned to identify variable regions like sequence-characterized amplified regions and insertions and deletions specific to race 7. Primer pairs were designed targeting these regions and validated against 22 samples. The polymerase chain reaction analysis revealed that three primer pairs specifically amplified the DNA fragment corresponding to race 7. The obtained finding clearly demonstrates the efficiency of the newly developed markers in accurately detecting Xcc race 7 among the other races. These results indicated that the newly developed marker can successfully and rapidly detect Xcc race 7 from other races. This study represents the first report on the successful development of specific molecular markers for Xcc race 7.