• Title/Summary/Keyword: XRD분석

Search Result 2,851, Processing Time 0.032 seconds

Electrochemical Characteristics of LiMn2O4 Cathodes Synthesized from Various Precursors of Manganese Oxide and Manganese Hydroxide (다양한 형태 및 구조의 망간산화물 및 망간수산화물 전구체로부터 합성한 LiMn2O4양극의 전기화학적 특성 연구)

  • Lee, Jong-Moon;Kim, Joo-Seong;Hong, Soon-Kie;Lee, Jeong-Jin;Ahn, Han-Cheol;Cho, Won-Il;Mho, Sun-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.172-180
    • /
    • 2012
  • The $LiMn_2O_4$ cathodes for lithium ion battery were synthesized from various precursors of manganese oxides and manganese hydroxides. As the first step, nanosized precursors such as ${\alpha}-MnO_2$ (nano-sticks), ${\beta}-MnO_2$ (nano-rods), $Mn_3O_4$ (nano-octahedra), amorphous $MnO_2$(nano-spheres), and $Mn(OH)_2$ (nano-plates) were prepared by a hydrothermal or a precipitation method. Spinel $LiMn_2O_4$ with various sizes and shapes were finally synthesized by a solid-state reaction method from the manganese precursors and LiOH. Nano-sized (500 nm) octahedron $LiMn_2O_4$ showed high capacities of 107 mAh $g^{-1}$ and 99 mAh $g^{-1}$ at 1 C- and 50 C-rate, respectively. Three dimensional octahedral crystallites exhibit superior electrochemical characteristics to the other one-dimensional and two-dimensional shaped $LiMn_2O_4$ nanoparticles. After 500 consecutive charge discharge battery cycles at 10 C-rate with the nano-octahedron $LiMn_2O_4$ cathode, the capacity retention of 95% was observed, which is far better than any other morphologies studied in this work.

Sandstone Diagenesis of the Lower Permian Jangseong Formation, Jangseong Area, Samcheog Coalfield (삼척탄전 장성일대에 분포하는 하부페름기 장성층 사암의 속성작용)

  • 박현미;유인창;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.132-145
    • /
    • 1998
  • The coal-bearing siliciclastic rocks of the Lower Permian Jangseong Formation, Samcheog coalfield, represent a megacyclothem which shows cyclic repetitions of sandstone, shale, coaly shale, and coals. Petrographic, geochemical, and SEM studies for sandstone samples, and XRD analysis for clay minerals were carried out to understand diagenesis in the sandstones of the Jangseong Formation. The Jangseong sandstones are composed of 60% quartz (mainly monocrystalline quartz) and 36% clay matrix and cement with minor amounts of feldspar, lithic fragments and accessory minerals (less than 4%). Jangseong sandstones are classified mostly as quartzwackes and partly as lithic graywackes according to the scheme of Dott(1964). The textural relationships between authigenic minerals and cements in thin sections and SEM photomicrographs suggest the paragenetic sequence as follows; (1) mechanical compaction, (2) cementation by quartz overgrowth, (3) formation of authigenic clay minerals (illite, kaolinite), (4) dissolution of framework grains and development of secondary porosity, and (5) later-stage pore-filling by pyrophyllite. We propose that these diagenetic processes might be due to organic-inorganic interaction between the dominant framework grains and the formation water. The Al, Si ions and organic acid, derived from dewatering of interbedded organic-rich shale and coals, were transported into the Jangseong sandstones. This caused changes in the chemistry of the formation water of the sandstones, and resulted in overgrowth of quartz and precipitation of authigenic clay minerals of kaolinite and illite. The secondary pores, produced during dissolution of clay and framework grains by organic acid and $CO_2$ gas, were conduit for silica-rich solution into the Jangseong sandstones and the influx of silica-rich solution produced the late-stage pyrophyllite after the expanse of kaolinite. The origin of the solution that formed pyrophyllite is not likely to be the organic-rich formation water based on the observation of fracture-filling pyrophyllite in the Jangseong sandstones, but the process of pyrophyllite pore-filling was indirectly related to organic-inorganic interaction.

  • PDF

극성 (0001) 및 반극성 (11-22) n-ZnO/p-GaN 이종접합 발광 다이오드의 광전 특성 분석에 대한 연구

  • Choe, Nak-Jeong;Lee, Jae-Hwan;Han, Sang-Hyeon;Son, Hyo-Su;Lee, Seong-Nam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.310-310
    • /
    • 2014
  • ZnO박막은 넓은 밴드갭 (3.37 eV), 높은 여기 결합 에너지 (60 meV)를 가지는 육방정계 우르자이트(hexagonal wurtzite) 결정구조를 가지는 II-VI족 화합물 반도체로, 가시광선 영역에서의 높은 광학적 투과도 특성과 자외선 파장에서 발광이 가능한 장점을 가진다. 최근, ZnO박막 성장 기술이 상당히 발전하였지만, 아직까지도 p-형 ZnO박막 성장 기술은 충분히 발전하지 못하여 ZnO의 동종접합 LED는 아직 상용화되지 않고 있는 실정이다. 따라서, 많은 연구 그룹에서 p-GaN, p-SiC, p-diamond, p-Si 등과 같은 p-type 물질 위에 n-type ZnO를 성장시킨 이종접합 다이오드가 연구되고 있다. 특히, p-GaN의 경우 ZnO와의 격자 불일치 정도가 1.8 % 정도로 작다는 장점이 있어 많은 연구가 이루어 지고 있다. 일반적으로 c-축을 기반으로 한 극성ZnO 발광다이오드에서는 자발 분극과 압전 분극 현상에 의해 밴드 휨 현상이 발생하고, 이로 인해 전자와 정공의 공간적 분리가 발생하게 되어 발광 재결합 효율이 제한되고 있다는 문제가 발생한다. 따라서, 본 연구에서는 극성 (0001) 및 비극성 (10-10) n-ZnO/p-GaN 발광다이오드의 성장 및 발광 소자의 전기 및 광학적 특성에 대한 비교 연구를 진행하였다. 금속유기 화학증착법을 이용하여 c-면과 m-면 위에 각각 극성 (0001) 및 반극성 (11-22) GaN박막을 $2.0{\mu}m$ 성장시킨 후 Mg 도핑을 한 p-GaN을 $0.4{\mu}m$ 성장시켜 각각 극성 (0001) 및 반극성 (11-22) p-GaN템플릿을 준비하였다. 이후, N2분위기 $700^{\circ}C$에서 3분동안 열처리를 통하여 Mg 도펀트를 활성화시킨 후 원자층 증착법을 이용하여 동시에 극성 및 반극성 p-GaN의 위에 n-ZnO를 $0.11{\mu}m$ 성장시켜 이종접합구조의 발광소자를 형성하였다. 이때, 극성 (0001) p-GaN 위에는 극성의 n-ZnO 박막이 성장되는 반면, 반극성 (11-22) p-GaN 위에는 비극성 (10-10) n-ZnO 박막이 성장됨을 HR-XRD로 확인하였다. 극성 (0001) n-ZnO/p-GaN이종접합 발광다이오드의 전계 발광 스펙트럼에서는 430 nm 와 550 nm의 두 피크가 동시에 관찰되었다. 430 nm 대역의 파장은 p-GaN의 깊은 준위에서 발광하는 것으로 판단되며, 550 nm 피크 영역은 ZnO의 깊은 준위에서 발광되는 것으로 판단된다. 특히, 10 mA 이하의 저전류 주입시 550 nm의 피크는 430 nm 영역보다 더 큰 발광세기를 나타내고 있다. 하지만, 10 mA 이상의 전류주입 하에서는 550 nm의 영역보다 430 nm의 발광세기가 더욱 증가하는 것을 확인할 수 있었다. 이것은 ZnO의 밴드갭이 3.37 eV로 GaN의 밴드갭인 3.4 eV다 작기 때문에 우선적으로 ZnO의 깊은 준위에서 발광하는 550 nm가 더욱 우세하지만, 지속적으로 전류주입 증가에 따른 캐리어 증가시 n-ZnO에서 p-GaN로 전자가 넘어가며 p-GaN의 깊은 준위인 430 nm에서의 피크가 우세해지는 것으로 판단된다. 반면에, 비극성 (10-10) n-ZnO/반극성 (11-22) p-GaN 구조의 이종접합 발광다이오드로 전계 발광 스펙트럼에서는 극성 (0001) n-ZnO/p-GaN에 비하여 매우 낮은 전계 발광 세기를 나타내고 있다. 이는, 극성 n-ZnO/p-GaN에 비하여 비극성 n-ZnO/반극성 p-GaN의 결정성이 상대적으로 낮기 때문으로 판단된다. 또한, 20 mA 영역에서도 510 nm의 깊은 준위와 430 nm의 발광이 관찰되었다. 동일한 20 mA하에서 두 피크의 발광세기를 비교하면 430 nm의 영역은 극성 n-ZnO/p-GaN에 비하여 매우 낮은 값을 나타내고 있다. 이는 반극성 (11-22) p-GaN의 경우 극성 (0001) p-GaN에 비하여 우수한 p-형 특성에 기인한 것으로 판단된다.

  • PDF

Ni/Au Electroless Plating for Solder Bump Formation in Flip Chip (Flip Chip의 Solder Bump 형성을 위한 Ni/Au 무전해 도금 공정 연구)

  • Jo, Min-Gyo;O, Mu-Hyeong;Lee, Won-Hae;Park, Jong-Wan
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.700-708
    • /
    • 1996
  • Electroless plating technique was utilized to flip chip bonding to improve surface mount characteristics. Each step of plating procedure was studied in terms pf pH, plating temperature and plating time. Al patterned 4 inch Si wafers were used as substrstes and zincate was used as an activation solution. Heat treatment was carried out for all the specimens in the temperature range from room temperature to $400^{\circ}C$ for $30^{\circ}C$ minutes in a vacuum furnace. Homogeneous distribution of Zn particles of size was obtained by the zincate treatment with pH 13 ~ 13.5, solution concentration of 15 ~ 25% at room temperature. The plating rates for both Ni-P and Au electroless plating steps increased with increasing the plating temperature and pH. The main crystallization planes of the plated Au were found to be (111) a pH 7 and (200) and (111) at pH 9 independent of the annealing temperature.

  • PDF

Electrochemical Characteristic on Hydrogen Intercalation into the Interface between Electrolyte of the 0.1N H2SO4and Amorphous Tungsten Oxides Thin Film Fabricated by Sol-Gel Method (졸-겔법으로 제조된 비정질의 텅스텐 산화물 박막과 황산 전해질 계면에서 일어나는 수소의 층간 반응에 대한 전기화학적 특성)

  • Kang, Tae-Hyuk;Min, Byoung-Chul;Ju, Jeh-Beck;Sohn, Tae-Won;Cho, Won-Il
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1078-1086
    • /
    • 1996
  • The peroxo-polytungstic acid was formed by the direct reaction of tungsten powder with the hydrogen peroxide solution. Peroxo-polytungstic powder were prepared by rotary evaporator using the fabricated on to ITO coated glass as substrate by dip-coating method using $2g/10mL(W-IPA/H_2O)$ sol solution. A substrate was dipped into the sol solution and after a meniscus had settled, the substrate was withdrawn at a constant rate of the 3mm/sec. Thicker layer could be built up by repeated dipping/post-treatment 15 times cycles. The layers dried at the temperature of $65{\sim}70^{\circ}C$ during the withdrawn process, and then tungsten oxides thin film was formed by final heating treatment at the temperature of $230{\sim}240^{\circ}C$ for 30min. A linear rotation between the thickness of thin film and the number of dipping/post-treatment cycles for tungsten oxides thin films made by dip-coating was found. The thickness of thin film had $60{\AA}$ after one dipping. From the patterns of XRD, the structure of tungsten oxides thin film identified as amorphous one and from the photographs of SEM, the defects and the moderate cracks were observed on the tungsten oxides thin film, but the homogeneous surface of thin films were mostly appeared. The electrochemical characteristic of the $ITO/WO_3$ thin film electrode were confirmed by the cyclic voltammetry and the cathodic Tafel polaization method. The coloring bleaching processes were clearly repeated up to several hundreds cycles by multiple cyclic voltammetry, but the dissolved phenomenon of thin film revealed in $H_2SO_4$ solution was observed due to the decrease of the current densities. The diffusion coefficient was calculated from irreversible Randles-Sevick equation from the data obtained by the cyclic voltammetry with various scan rates.

  • PDF

The Photocatalytic Degradation of Humic Acid by TiO2 Sol-Gel Coating -Characterization of Humic Acid in the Chemical Oxidation Treatment (II)- (TiO2 졸-겔 코팅 막에 의한 Humic Acid의 광분해 -화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구 (II)-)

  • Seok, Sang Il;Ahn, Bok Yeop;Suh, Tae Soo;Rhee, Dong Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.765-773
    • /
    • 2000
  • The degradation of humic acid using $TiO_2$ coatings was studied, $TiO_2$ coatings were prepared by dip-coating method. Sol solutions for coating were prepared by mixing the gel, which can be produced by the reaction of $TiOCl_2$ and $NH_4OH$ solution, and hydrogen peroxide solution, and hydrolysis of titanium tetraisopropoxide (TTIP). It was shown from XRD that coatings from sol aged at $100^{\circ}C$ for 18h with titanium peroxo solution were crystallized to anatase in the range of temperatures of $25^{\circ}C$ to $500^{\circ}C$. In contrast, those coated from TTIP were crystallized to anatase at temperature above $400^{\circ}C$. So the sols originated from $TiCl_4$ can be applied for not only on the heat-resistance substrates but on the plastic substrates. Thickness and the quality of the films were dependent on the withdrawing speed, the concentration of sol, and the number of coating. The films showed various interference colors depending on the thickness of them. In the case that the films coated 2 times at withdrawing speed of 2.5cm per minute by 0.2M sol, the films had a transparent light blue color with thickness of around 50nm. It was known from the result of photo-degradation by $TiO_2$ coatings using humic acid that the removal efficiency of $COD_{cr}$ was over 85% after illumination of $UV/H_2O_2$ for 40min. and that of UV/VIS absorbable materials was over 95%.

  • PDF

Geomicrobiological Behavior of Heavy Metals in Paddy Soil Near Abandoned Au-Ag Mine Supplied with Carbon Sources (탄소원을 공급한 폐금은광산 주변 논토양 내 중금속의 지구미생물학적 거동 연구)

  • Ko, M.S.;Lee, J.U.;Park, H.S.;Shin, J.S.;Bang, K.M.;Chon, H.T.;Lee, J.S.;Kim, J.Y.
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.413-426
    • /
    • 2009
  • The study was conducted to investigate the effects of indigenous bacteria on geochemical behavior of toxic heavy metals in contaminated paddy soil near an abandoned mine. The effects of sulfate amendment to stimulate microbial sulfate reduction on heavy metal behaviors were also investigated. Batch-type experiments were performed with lactate or glucose as a carbon source to activate indigenous bacteria in the soil under anaerobic condition for 100 days. Sulfate (250 mg/L) was artificially injected at 60 days after the onset of the experiments. In the case of glucose supply, solution pH increased from 4.8 to 7.6 while pH was maintained at 7~8 in the lactate solution. The initial low pH in the case of glucose supply likely resulted in the enhanced extraction of Fe and most heavy metals at the initial experimental period. Lactate supply exerted no significant difference on the amounts of dissolved Zn, Pb, Ni and Cu between microbial and abiotic control slurries; however, lower Zn, Pb and Ni and higher Cu concentrations were observed in the microbial slurries than in the controls when glucose supplied. Sulfate amendment led to dramatic decrease in dissolved Cr and maintenance of dissolved As, both of which had gradually increased over time till the sulfate injection. Black precipitates formed in solution after sulfate amendment, and violarite($Fe^{+2}{Ni^{+3}}_2S_4$) was found with XRD analysis in the microbial precipitates. Conceivably the mineral might be formed after Fe(III) reduction and microbial sulfate reduction with coprecipitation of heavy metal. The results suggested that heavy metals which can be readily extracted from contaminated paddy soils may be stabilized in soil formation by microbial sulfate reduction.

Solubility Improvement of Cuttle Bone Powder Using Organic Acids (유기산처리에 의한 갑오징어갑 분말의 가용성 개선)

  • KIM Jin-Soo;CHO Moon-LAE;HEU Min-Soo;CHO Tae-Jong;AN Hwa-Jin;CHA Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • As a pan of a study on effective use of seafood processing by-products, such as cuttle bone as a calcium source, we examined on the kind of organic acid (acetic acid and lactic acid), reaction concentration (mole ratio of calcium to mole of organic acid), reaction temperature $(20\~60^{\circ}C)$ and reaction time (6$\~$24 hours) as reaction conditions for the solubility improvement of cuttle bone powder. The high soluble cuttle bone powder was also prepared from the optimal reaction conditions and partially characterized. From the results on examination of reaction conditions, the high soluble cuttle bone powder was prepared with 0.4 in mole ratio of a calcium to mole of a acetic acid at room temperature for 12 hours, Judging from the patterns of IR and X-ray diffraction, the main component of the high soluble cuttle bone powder was presented as a form of calcium acetate, and a scanning electron micrograph showed an irregular form. The soluble calcium content in the high soluble cuttle bone powder was $5.3\%$ and it was improved about 1,380 times compared to a raw cuttle bone powder. For the effective use of the high soluble cuttle bone powder as a material for a functional improvement in processing, it should be used after the calcium treatment at room temperature for about 1 hour in tap water or distilled water. from these results, we concluded that it is possible to use the high soluble cut시e bone powder as a material for a functional improvement in processing.

Solvothermal Preparation of Nanocrystalline TiO2 Using Alcohol-water Mixed Solvent (알코올-물 혼합용액을 이용하는 Solvothermal 법에 의한 나노크기의 TiO2 제조)

  • Lee, Sang Geun;Park, Seong Soo;Hong, Seong Soo;Park, Jong Myung;Lee, Seung Ho;Kim, Dae Sung;Lee, Gun Dae
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.685-690
    • /
    • 2011
  • In this study, a solvothermal reaction to prepare nanocrystalline titania was carried out using $TiCl_4$ and mixed solvents of alcohol and water. The effects of the type and the composition of alcohol on the crystal structure and agglomeration of final $TiO_2$ products were investigated. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as scanning electron microscopy (SEM). In the solvothermal reaction using the n-butanol solutions with different volume ratios of n-butanol/water (100/0, 75/25, 50/50, 25/75, 0/100), the extent of agglomeration of obtained rutile $TiO_2$ was found to change with the volume ratio of n-butanol/water, and the n-butanol/water ratio of 75/25 revealed the best result for the preparation of well-dispersed nanocrystalline $TiO_2$ powders. The crystal phase of $TiO_2$ prepared through the solvothermal reaction changed with the type of alcohol in solvent (alcohol/water = 75/25). $TiO_2$ products obtained with the aqueous solutions of methanol, ethanol and isopropanol have an anatase phase, while that with n-butanol has a rutile phase. The results showed that, in the solvothermal reaction using both $TiCl_4$ as a starting material and the alcohol-water mixed solvents without any other additive, the enhancement of dispersion and control of crystal structure of $TiO_2$ products can be feasible by simply varying the composition and type of alcohol in the mixed solvents.

Revealing the Paleo-ocean Environment of OSM-XX in the Western Pacific Magellan Seamount with Mineralogical and Geochemical Properties of Ferromanganese Crust (서태평양 마젤란해산군 OSM-XX 해저산 망간각의 광물학적, 지화학적 특성과 고해양 고환경 복원 연구)

  • Jinsub Park;Kiho Yang
    • Economic and Environmental Geology
    • /
    • v.56 no.1
    • /
    • pp.55-63
    • /
    • 2023
  • Variations in geochemical and mineralogical properties of the ferromanganese(Fe-Mn) crust reflect environmental changes. In the present study, geochemical and mineralogical analyses, including micro X-ray fluorescence and X-ray diffraction, were utilized to reconstruct the paleo-ocean environment of western Pacific Magellan seamount cluster. Samples of the Fe-Mn crust were collected using an epibenthic sledge from the open seamount XX (151° 51.12' 7.2" E and 16° 8.16' 9.6" N, 1557 meters below sea level) in the Western Pacific Magellan Seamount. According to the structure and phosphating status, the Fe-Mn crust of the OSM-XX can be divided into the following: phosphatizated (L4-L5), massive non-phosphatizated (L3), and porous non-phosphatizated (L1-L2) portions. All ferromanganese layers contain vernadite, and owing to the presence of carbonate fluorapatite (CFA), the phosphatizated portion (L4-L5) is rich in Ca and P. The massive non-phosphatizated section (L3) contains high Mn, Ni, and Co, whereas the porous non-phosphatizated portion (L1-L2), which comprises detrital quartz and feldspar, is rich in Fe. Variations in properties of the Fe-Mn crust from the OSM-XX reflect changes in the nearby marine environment. The formation of this crust started at approximately 51.87 Ma, and precipitation of the CFA during the global phosphatization event that occurred at approximately 36-32 Ma highlights an elevated sea level and low temperature during the associated period. The high Mn, Ni, and Co concentrations and elevated Mn/Fe ratios of samples from the massive phosphatizated portion indicate that the oxygen minimum zone (OMZ) was enhanced, and reducing conditions prevailed during the crust formation. The high Fe and low Mn/Fe ratios in the porous portion indicate a weak OMZ and dominantly oxidizing conditions. These data reflect environmental changes following the end of the Mi-1 glacial period in the Miocene-Oligocene boundary. Subsequently, Mn/Fe and Co/Mn ratios increased slightly in the outermost part of Fe-Mn crust because of the enhanced bottom current and OMZ associated with the continued cooling from approximately 9 Ma. However, the reduced carbonate dissolution rate in the Pacific Ocean from approximately 6 Ma decreased the growth rate of the Fe-Mn crust.