• Title/Summary/Keyword: XPS (X-ray Photoelectron Spectroscopy)

Search Result 1,006, Processing Time 0.027 seconds

Characterization and Conversion Electron Mössbauer Spectroscopy of HoMn1-x-FexO3 Thin Films by Pulsed Laser Deposition (PLD를 이용한 HoMn1-x-FexO3 박막 제조 및 후방 산란형 뫼스바우어 분광 연구)

  • Choi, Dong-Hyeok;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.18-21
    • /
    • 2007
  • The hexagonal $HoMn_{1-x}-Fe_xO_3$(x=0.00, 0.05) thin films were prepared using pulsed laser deposition(PLD) method on $Pt/Ti/SiO_2/Si$ substrate. The microstructure and magnetic properties have been studied by x-ray diffraction(XRD), atomic force microscopy (AFH), scanning electron microscope(SEM:), x-ray photoelectron spectroscopy(XPS), and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). From the analysis of the x-ray diffraction patterns, the crystal structure for all films was found to be a hexagonal($P6_3cm$), which was preferentially grown along(110) direction. The lattice constant $c_0$ of the film with x=0.05 was close to that of single crystal, whereas lattice constant $a_0$ with respect to single crystal shows a slight decrease. This difference of lattice parameters between film and single crystal was caused by the lattice mismatch between the film and $Pt/Ti/SiO_2/Si$ substrate. Conversion electron $M\"{o}ssbauer$ spectrum of $HoMn_{0.95}Fe_{0.05}O_3$ thin film shows an asymmetry doublet absorption ratio at room temperature, which is due to the oriented direction of crystallographic domains. This is corresponding with analysis of x-ray diffraction. The quadrupole splitting(${\Delta}E_Q$) at room temperature is found to be $1.62{\pm}0.01mm/s$. This large ${\Delta}E_Q$ was caused by asymmetry environment surrounding Fe ion.

투명 유연 AMOLED TV 구현을 위한 증착형 SnO2/Ag-Pd-Cu(APC)/SnO2 다층 투명 캐소드 박막 연구

  • Kim, Du-Hui;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.181.2-181.2
    • /
    • 2016
  • OLED 소자는 발광 방향에 따라 Bottom Emission 방식과 Top Emission 방식으로 나뉜다. 이 중 대면적 OLED TV 적용에 개구율이 더 높은 Top Emission방식을 선호하는 추세이다. 높은 개구율을 가진 Top Emission OLED소자를 위해서는 투명하고 전도성이 높은 캐소드가 중요하다. 본 연구에서는 Themal Evaporation 시스템을 이용하여 증착한 $SnO_2/Ag-Pd-Cu(APC)/SnO_2$ hybrid 전극의 특성을 연구하고 Oxide/Metal/Oxide(OMO) hybrid 박막의 bending mechanism을 제시하였다. base pressure는 $1{\times}10^{-6}Torr$로 고정하고 $SnO_2$ 박막은 0.34A / 0.32V, APC 박막은 0.46A / 0.40V의 power로 성막하였다. APC와 $SnO_2$의 두께를 변수로 OMO 전극을 제작하였고 그 전기적, 광학적 특성을 Hall measurement, UV/Visible spectroscopy을 이용하여 분석하고 Figure of merit 값을 바탕으로 최적 두께를 설정하였다. UPS(Ultraviolet Photoelectron Spectroscopy) 분석으로 $SnO_2/APC/SnO_2$ 전극의 일함수을 통해 투명 cathode로 쓰였을 때 $SnO_2$ 층이 buffer layer역할을 함을 확인하였다. XPS(X-ray photoelectron spectroscopy)를 이용하여 정성분석과 정량분석을 하였고 OMO hybrid 전극의 bending mechanism 연구를 위해 다양한 bending test (Inner/Outer dynamic fatigue test, twisting test, rolling test)를 진행하였다. 물리적 힘이 가해진 OMO hybrid 전극의 표면과 구조는 FE-SEM(Field Emission Scanning Electron Microscope) 분석을 통해서 확인할 수 있었다.

  • PDF

Calcium annealing approach to control of surface groups and formation of oxide in Ti3C2Tx MXene

  • Jung-Min Oh;Su Bin Choi;Taeheon Kim;Jikwang Chae;Hyeonsu Lim;Jae-Won Lim;In-Seok Seo;Jong-Woong Kim
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Ti3C2Tx MXene, a 2D material, is known to exhibit unique characteristics that are strongly dependent on surface termination groups. Here, we developed a novel annealing approach with Ca as a reducing agent to simultaneously remove F and O groups from the surface of multilayered MXene powder. Unlike H2 annealing that removes F effectively but has difficulty in removing O, annealing with Ca effectively removed both O and F. X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy revealed that the proposed approach effectively removed F and O from the MXene powder. The results of O/N analyses showed that the O concentration decreased by 57.5% (from 2.66 to 1.13 wt%). In addition, XPS fitting showed that the volume fraction of metal oxides (TiO2 and Al2O3) decreased, while surface termination groups (-O and -OH) were enhanced, which could increase the hydrophilic and adsorption properties of the MXene. These findings suggest that when F and O are removed from the MXene powder, the interlayer spacing of its lattice structure increases. The proposed treatment also resulted in an increase in the specific surface area (from 5.17 to 10.98 m2/g), with an increase in oxidation resistance temperature in air from ~436 to ~667 ℃. The benefits of this novel technology were verified by demonstrating the significantly improved cyclic charge-discharge characteristics of a lithium-ion battery with a Ca-treated MXene electrode.

Effects of Surface Nitrification on Thermal Conductivity of Modified Aluminum Oxide Nanofibers-Reinforced Epoxy Matrix Nanocomposites

  • Kim, Byung-Joo;Bae, Kyong-Min;An, Kay-Hyeok;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3258-3264
    • /
    • 2012
  • Aluminum oxide ($Al_2O_3$) nanofibers were treated thermally under an ammonia ($NH_3$) gas stream balanced by nitrogen to form a thin aluminum nitride (AlN) layer on the nanofibers, resulting in the enhancement of thermal conductivity of $Al_2O_3$/epoxy nanocomposites. The micro-structural and morphological properties of the $NH_3$-assisted thermally-treated $Al_2O_3$ nanofibers were characterized by X-ray diffraction (XRD) and atomic force microscopy (AEM), respectively. The surface characteristics and pore structures were observed by X-ray photoelectron spectroscopy (XPS), Zeta-potential and $N_2$/77 K isothermal adsorptions. From the results, the formation of AlN on $Al_2O_3$ nanofibers was confirmed by XRD and XPS. The thermal conductivity (TC) of the modified $Al_2O_3$ nanofibers/epoxy composites increased with increasing treated temperatures. On the other hand, the severely treated $Al_2O_3$/epoxy composites showed a decrease in TC, resulting from a decrease in the probability of heat-transfer networks between the filler and matrix in this system due to the aggregation of nanofiber fillers.

Roles of Nickel Layer Deposition on Surface and Electric Properties of Carbon Fibers

  • Kim, Byung-Joo;Choi, Woong-Ki;Bae, Kyong-Min;Moon, Cheol-Whan;Song, Heung-Sub;Park, Jong-Kyoo;Lee, Jae-Yeol;Im, Seung-Soon;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1630-1634
    • /
    • 2011
  • Electroless plating of metallic nickel on carbon fiber surfaces was carried out to control specific electric resistivity of the fibers, and the effects of the nickel content and coating thickness on the electric properties were studied. The structural and surface properties of the carbon fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The specific resistivity of the fibers was measured using a four-point probe testing method. From the XPS results, the oxygen and Ni atomic ratio of the fibers was greatly enhanced as the plating time increased. Additionally, it was observed that the specific electric resistivity decreased considerably in the presence of metallic nickel particles and with the formation of nickel layers on carbon fibers.

Fabrication and Thermal Oxidation of ZnO Nanofibers Prepared via Electrospinning Technique

  • Baek, Jeong-Ha;Park, Ju-Yun;Kang, Ji-Soo;Kim, Don;Koh, Sung-Wi;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2694-2698
    • /
    • 2012
  • Materials on the scale of nanoscale have widely been used as research topics because of their interesting characteristics and aspects they bring into the field. Out of the many metal oxides, zinc oxide (ZnO) was chosen to be fabricated as nanofibers using the electrospinning method for potential uses of solar cells and sensors. After ZnO nanofibers were obtained, calcination temperature effects on the ZnO nanofibers were studied and reported here. The results of scanning electron microscopy (SEM) revealed that the aggregation of the ZnO nanofibers progressed by calcination. X-ray diffraction (XRD) study showed the hcp ZnO structure was enhanced by calcination at 873 and 1173 K. Transmission electron microscopy (TEM) confirmed the crystallinity of the calcined ZnO nanofibers. X-ray photoelectron spectroscopy (XPS) verified the thermal oxidation of Zn species by calcination in the nanofibers. These techniques have helped us deduce the facts that the diameter of ZnO increases as the calcination temperature was raised; the process of calcination affects the crystallinity of ZnO nanofibers, and the thermal oxidation of Zn species was observed as the calcination temperature was raised.

Synthesis and Characterization of PtPd and PtRuPd Anode Catalysts for Direct Methanol Fuel Cells

  • Horvath G.;Park K. W.;Sung Y. E.
    • 한국전기화학회:학술대회논문집
    • /
    • 2002.07a
    • /
    • pp.211-218
    • /
    • 2002
  • In this study, Pt/Pd (1.1), PtPd (2:1) and PtPd (3:1) binary catalysts and Pt/Ru/Pd (5:4:1) ternary catalyst were designed. The catalysts were synthesized by impregnation method using $NaBH_4$ as a reducing agent. A good catalyst for methanol oxidation requires low on-set potential, stable durability and low activation energy. In order to investigate the catalytic activity for the methanol oxidation, electrochemical measurements such as cyclic voltammetry and chronoamperometry were peformed in sulfuric acid with/without methanol solution. In order to calculate the activation energy of the reaction, electrochemical measurements were also tested at different temperatures. For investigation of the structural analysis such as particle size and alloying, X-ray diffraction and transmission electron microscopy analysis were used. In order to identify the role of the Pd and to determine the composition of the surface of the Pt/Pd nanoparticles, X-ray photoelectron spectroscopy (XPS) analysis was investigated. The XPS spectra of Pd showed that Pd appears only as a metallic state in the binary catalysts. The chemical states of Pt in PtPd catalysts are both metallic and oxidative. Polarization curves and power density data were obtained by testing the DMFC unit cell performance of PtPd and PtRuPd catalysts. These data showed that Pt/Pd (2:1) and Pt/Ru/Pd (5:4:1) have better performance than Pt and Pt/Ru, respectively.

  • PDF

Analysis on the Field Effect Mobility Variation of Tin Oxide Thin Films with Oxygen Partial Pressure (산소 분압에 따른 산화주석 박막의 전계효과 이동도 변화 분석)

  • Ma, Tae Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.6
    • /
    • pp.350-355
    • /
    • 2014
  • Bottom-gate tin oxide ($SnO_2$) thin film transistors (TFTs) were fabricated on $N^+$ Si wafers used as gate electrodes. 60-nm-thick $SnO_2$ thin films acting as active layers were sputtered on $SiO_2/Al_2O_3$ films. The $SiO_2/Al_2O_3$ films deposited on the Si wafers were employed for gate dielectrics. In order to increase the resistivity of the $SnO_2$ thin films, oxygen mixed with argon was introduced into the chamber during the sputtering. The mobility of $SnO_2$ TFTs was measured as a function of the flow ratio of oxygen to argon ($O_2/Ar$). The mobility variation with $O_2/Ar$ was analyzed through studies on crystallinity, oxygen binding state, optical properties. X-ray diffraction (XRD) and XPS (X-ray photoelectron spectroscopy) were carried out to observe the crystallinity and oxygen binding state of $SnO_2$ films. The mobility decreased with increasing $O_2/Ar$. It was found that the decrease of the mobility is mainly due to the decrease in the polarizability of $SnO_2$ films.

The effect of the modification methods on the catalytic performance of activated carbon supported CuO-ZnO catalysts

  • Duan, Huamei;Yang, Yunxia;Patel, Jim;Burke, Nick;Zhai, Yuchun;Webley, Paul A.;Chen, Dengfu;Long, Mujun
    • Carbon letters
    • /
    • v.25
    • /
    • pp.33-42
    • /
    • 2018
  • Activated carbon (AC) was modified by ammonium persulphate or nitric acid, respectively. AC and the modified materials were used as catalyst supports. The oxygen groups were introduced in the supports during the modifications. All the supports were characterized by $N_2$-physisorption, Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis. Methanol synthesis catalysts were prepared through wet impregnation of copper nitrate and zinc nitrate on the supports followed by thermal decomposition. These catalysts were measured by the means of $N_2$-physisorption, X-ray diffraction, XPS, temperature programmed reduction and TEM tests. The catalytic performances of the prepared catalysts were compared with a commercial catalyst (CZA) in this work. The results showed that the methanol production rate of AC-CZ ($23mmol-CH_3OH/(g-Cu{\cdot}h)$) was higher, on Cu loading basis, than that of CZA ($9mmol-CH_3OH/(g-Cu{\cdot}h)$). We also found that the modification methods produced strong metal-support interactions leading to poor catalytic performance. AC without any modification can prompt the catalytic performance of the resulted catalyst.

Selective Oxidation of Hydrogen Sulfide to Elemental Sulfur with Fe/MgO Catalysts in a Slurry Reactor

  • Lee, Eun-Ku;Jung, Kwang-Deog;Joo, Oh-Shim;Shul, Yong-Gun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.281-284
    • /
    • 2005
  • The Fe/MgO catalysts with different Fe loadings (1, 4, 6, 15 and 30 wt% Fe) were prepared by a wet impregnation with iron nitrate as precursor. All of the catalysts were characterized by BET surface analyzer, X-ray diffraction (XRD), temperature-programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). The maximum removal capacity of $H_2S$ was obtained with 15 wt% Fe/MgO catalyst which had the highest BET surface area among the measured catalysts. XRD of Fe/MgO catalysts showed that well dispersed Fe particles could be present on Fe/MgO with Fe loadings below 15 wt%. The crystallites of bulk $\alpha$-$Fe_2O_3$ became evident on 30 wt% Fe/MgO, which were confirmed by XRD. TPR profiles showed that the reducibility of Fe/MgO was strongly related to the loaded amounts of Fe on MgO support. Therefore, the highest removal efficiency of $H_2S$ in wet oxidation could be ascribed to a good dispersion and high reducibility of Fe/MgO catalyst. XPS studies indicated that the $H_2S$ oxidation with Fe/MgO could proceed via the redox mechanism ($Fe^{3+}\;{\leftrightarrow}\;Fe^{2+}$).