• Title/Summary/Keyword: XLPE insulation

Search Result 148, Processing Time 0.026 seconds

Tensile strength and Elongation Characteristics for Insulation Crosslinking of XLPE Insulated Power cable (XLPE 절연 전력케이블의 절연체 가교도에 따른 인장강도 및 신장특성)

  • Kim, We-Young;Yun, Dae-Hyuk;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1425-1427
    • /
    • 2002
  • Degree of crosslinking of insulation is very important factor that is determined characteristics of XLPE insulated power cable. Increase of degree of crosslinking is closely related to increase of mechanical characteristics of XLPE insulated power cable. In this study, mechanical characteristics of XLPE insulation for degree of crosslinking was analyzed tensile strength and elongation of insulation. As the result, mechanical characteristics of insulation for degree of crosslinking was divided three cases.

  • PDF

Anormal Dielectric and Insulation Properties of Semiconductor/XLPE (반도전층/XLPE 의 불규칙한 유전 및 절연 특성)

  • Lee, Jong-Chan;Kim, Kwang-Soo;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.53-57
    • /
    • 2002
  • Reduction of insulation thickness would be beneficial not only for increasing the cable length but would also improve its thermal performance. An interfacial diffusion method was devised to reduce insulation thickness by improving the interfacial properties of XLPE cable insulation. In this paper, to evaluate superficially the interface properties between XLPE insulation and semiconducting layer, the dielectric and insulation properties of tan${\delta}$ and volume resistance were measured with temperature dependence. Above the results, dielectirc and insulation properties with semiconductor/XLPE were more anormal than its bulk caused by the interfacial properties.

  • PDF

Study on the Estimation of Thermal History in XLPE Insulation (XLPE 절연체에서의 열이력 추정 연구)

  • Lee, Sang-Jin;Kim, Young-Ho;Kim, Young-Seong;Park, Wan-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1575-1577
    • /
    • 1999
  • XLPE is widely used as a main insulation in EHV power cables, deeply connected with thermal stress. In this study, the thermal history of XLPE insulation was examined using DSC(Differential Scanning Calorimetry). The principle is on the basis of the phenomenon that crystal in polyethylene is rearranged as it is annealed near/below the melting temperature. From the result, it was possible to define accurate temperature which was really applied on the XLPE insulation and this method was assured as a useful tool in characterization of thermal history in XLPE cable insulation.

  • PDF

Evaluation of Insulation Characteristics of EHV XLPE Power Cable (초고압 XLPE 전력케이블의 절연특성평가(I))

  • Jeong, K.H.;Baeg, I.J.;Lee, I.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1617-1619
    • /
    • 1998
  • In the nation, 154kV XLPE cable with an insulation thickness of 23mm have been used for transmission lines. The thickness is designed by old parameters which were determined by Kreuger, Oudin et al. in 1960s. By the way, the manufacturing technology has been developed. Especially in extruding and curing process we are using a triple common extruding head and applying gas-curing process. It allows the quality of XLPE cable improved. The paper evaluates the AC minimum insulation breakdown strength of XLPE power cable using model table. We can verify the uplifted insulation quality. And we expects the cable insulation thickness to be reduced applying the new parameter to the cable insulation design.

  • PDF

Partial Discharge Characteristics of XLPE According to Electrode Shape and Void (전극형상 및 보이드에 따른 XLPE의 부분방전 특성)

  • Shin, Jong-Yeol;Kim, Guin-sik;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.50-57
    • /
    • 2016
  • Transmission equipment is mainly used for the XLPE (cross-linked polyethylene) insulation cable for ultra high voltage power to minimize power loss. The experiment examined the partial discharge characteristics according to the insertion of the bar electrode and needle electrode into the XLPE specimen and the air voids. XLPE insulation cable manufactured by T. company and tungsten electrode material by K. company were used for specimens, by adhering conductive tape on the semi-conductive material of the lower electrode of XLPE specimen with the dimension of $16{\times}40{\times}30$ [mm] was used as negative electrode. In order to investigate the PD with ${\phi}$-q-n of XLPE specimen according to the electrode shape and the size of air voids. we examined the PD by varying the voltage after applying voltage of 3~20 kV on the electrode. Therefore, it was confirmed from the result of PD characteristics of specimen that the larger the air void than the gap between electrode (+) and electrode(-), the larger effect on the discharge when the bar electrode and needle electrode inserted into XLPE, and the closer the distance between the insulation and the needle electrode, the faster insulation breakdown.

Insulation Design and Reliability Evaluation of ±80kV HVDC XLPE Cables

  • Jung, Chae-Kyun;Park, Hung-Sok;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1002-1008
    • /
    • 2014
  • This paper describes insulation design and its reliability evaluation of ${\pm}80kV$ HVDC XLPE cable. Recently, the construction of HVDC transmission system, which is combined overhead line with underground cable, has been completed. This system is installed with existing 154 kV AC transmission line on the same tower. In this paper, the lightning transient analysis is firstly reviewed for selection of basic impulse insulation level and nominal insulation thickness. Then the electrical performance tests including load cycle test and superimposed impulse test based on CIGRE TB 496 are performed to evaluate the reliability of newly designed HVDC cable. There is no breakdown for ${\pm}80kV$ HVDC XLPE cable during electrical performance test. Finally, this system is installed in Jeju island based on successful electrical performance test (Type test). After installation tests are also successfully completed.

Electrical Degradation Pattern Analysis according to XLPE Cable (XLPE 케이블의 전기적 열화 패턴 분석)

  • Min, Chi-Hyun;Gwak, Dong-Sun;Chun, Hyun-Kwon;Choi, Jin-Wook;Kim, Young-Suk;Kim, Sun-Gu;Kim, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.114-120
    • /
    • 2008
  • XLPE cable is using insulator for Cross Linked Polyethylene(XLPE), because insulation Performance is superior and easy comparatively. Need systematization of accident transaction for electrical equipment accident, It is no disposal standard for defect of manufacture and second to accidents. in this paper deals with the change of XLPE cable insulation. To understand the electrical properties of XLPE insulation. Made of XLPE block sample, Penetration fracture Sample and flashover sample. Ogura needles having tip radius of $10[{\mu}m]$ were inserted into each sample. AC voltage of 1[kV/sec] increased at 60[Hz] were apple to breakdown sample and flashover sample. AC voltages of 12[kV], 17[kV] at 60[Hz] were a lied to XLPE block sample. The electrical properties of specimens were measured were measured from initiation of tree and breakdown to their characteristics were analyzed.

Reduction of Insulation thickness for EHV XLPE power cable (초고압 XLPE 전력케이블 절연두께 저감화)

  • Lee, Ki-Soo;Choi, Woong;Choi, Young-Hun;Choi, Bong-Nam;Kim, Do-Young;Yun, Duck-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2271-2273
    • /
    • 1999
  • The manufacturing technology of XLPE power cable ( e.g. gas curing, triple common extrusion, clean room, super-clean compound, etc.) had been developed in 1960's and the design parameter of insulation thickness for EHV XLPE power cable at present was determined in 1960's. But, the quality of XLPE power cable has been improved up to now. The re-evaluation of design parameter for insulation thickness reductions is required and so we performed weibull plotting test using model cable. This paper describes the evaluation details of the insulation characteristics according to weibull plotting test.

  • PDF

A Study on the Electrical Properties of Electrical Tree Degradation in XLPE Cable Insulation (XLPE 케이블의 전기트리 열화에 따른 전기적 특성 검토)

  • Gang, Dong-Sik;Seon, Jong-Ho;Lee, Hong-Sik;Park, Jeong-Hu;Jo, Jeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.400-405
    • /
    • 2000
  • In order to improve the reliability of XLPE cables, it is necessary to understand the mechanism of electrical and water tree degradation. Especially, electrical tree initiation and propagation are important in XLPE cable insulation. This paper deals with the changes of electrical properties of XLPE cable insulation with electrical tree degradation. To understand the electrical properties of XLPE insulation, specimens were prepared by 22.9kV distribution cable and made in a type of block. Ogura needles having tip radius of 10${\mu}{\textrm}{m}$ were inserted into each block pieces. AC voltages of 8kV, 10kV and 12kV at 60Hz were applied to needle. We investigated the relationship between electrical properties(PD quantity, tan$\delta$ and DC current) and the growth of electrical tree. The electrical properties of the specimens were measured from initiation of tree to breakdown and their characteristics were analyzed.

  • PDF

Estimation of Electrical & Physical Characteristics by Thermal History in XLPE Insulation (XLPE 절연체에서의 열이력에 의한 전기, 물리적 특성 평가)

  • Lee, Sang-Jin;Shim, Sung-Ik;Jeon, Seung-Ik
    • Proceedings of the KIEE Conference
    • /
    • 2008.05a
    • /
    • pp.183-184
    • /
    • 2008
  • The aim of this study is to find out the effects of thermal aging condition on dielectric strength and degree of crtstallinity of XLPE insulation. Thermal properties of XLPE insulation were investigated by DSC(differential scanning calorimetry) and dielectric strength were analyzed using AC BDV tester. Aging of XLPE samples were conducted through different four conditions. The degree of crtstallinity and AC BDV were changed by thermal history. From these results, it can be suggested that DSC and AC BDV test are suitable for diagnostic method of extra high voltage XLPE cable.

  • PDF