• Title/Summary/Keyword: XLPE insulated cable

Search Result 30, Processing Time 0.03 seconds

Tensile strength and Elongation Characteristics for Insulation Crosslinking of XLPE Insulated Power cable (XLPE 절연 전력케이블의 절연체 가교도에 따른 인장강도 및 신장특성)

  • Kim, We-Young;Yun, Dae-Hyuk;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1425-1427
    • /
    • 2002
  • Degree of crosslinking of insulation is very important factor that is determined characteristics of XLPE insulated power cable. Increase of degree of crosslinking is closely related to increase of mechanical characteristics of XLPE insulated power cable. In this study, mechanical characteristics of XLPE insulation for degree of crosslinking was analyzed tensile strength and elongation of insulation. As the result, mechanical characteristics of insulation for degree of crosslinking was divided three cases.

  • PDF

The International Standard Trends of MV Power Cable Installation Test and its Application on Korean Standard (지중배전케이블 준공시험 관련 국제규격 동향과 국내기준 개선 방안)

  • Lee, Jae-Bong;Jung, Yeon-Ha;Song, Il-Keun;Cho, Soung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1933-1937
    • /
    • 2008
  • XLPE insulated power cables are introduced in Korea in 1980s. The cable installation test has been carried out according to the Korean Technical Reference of Electrical Facilities. But recent research results shows DC Hipot test cannot detect the serious defects in XLPE insulated cables. VLF test is recommended as a installation test of XLPE insulated cables by CENELEC and IEEE standards in 1996 and 2001 respectively. We suggest to apply VLF test as an installation test for XLPE insulated MV cables in Korea.

Trends of Prefabricated Joints and their Jointing Techniques for EHV XLPE-insulated Power Cables (초고압 XLPE 전력케이블용 Prefabricated Joint 및 접속기술 동향)

  • Kim, Y.;Seong, J.K.;Han, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1608-1610
    • /
    • 1998
  • An oil-filled paper-insulated power cable and a XLPE-insulated power cable have been mainly applied as an extra-high-voltage underground power cable. But in recent the XLPE cable has been applied more widely than the OF cable, because of its advantages, such as the low-cost and simple installation. In general two types, molded and prefabricated, of straight joints are applied for the XLPE cables. For a tape-molded joint, one of molded joints, its electrical properties are excellent, but it has some disadvantages, such as a long working time. high skill of workers and the high cost of jointing equipments. For a prefabricated joint, developed and applied in Europe and Japan, its working time is short, its jointing procedures are simple, and its quality control is easy, but its prices are very high. In Korea the development of a compression-type PJ will be finished in the near future, and studies of its jointing techniques and equipments is actively going on. This paper describes the design and construction of the PJ, the jointing procedures and techniques for the PJ, and its future trends.

  • PDF

Estimation of Thermal History in XLPE Insulated Cable during Heat Cycle Test (Heat Cycle Test에서 XLPE 절연체에 인가되는 열이력의 추정)

  • Kim, Young-Ho;Lee, Sang-Jin;Lee, Gun-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1425-1427
    • /
    • 1998
  • The thermal history of XLPE insulated cable during heating cycle voltage test specified by IEC 840 was examined by DSC(differential scanning calorimetry) method, of which the principal is on the basis of the phenomenon that the crystals in polyethylene are rearranged as it is annealed near/below the melting temperature. From the result, it can be estimated that XLPE insulation near the conductor was exposed at the temperature of about $100^{\circ}C$ with the electrical stress through the test.

  • PDF

Progress in Technology of Ultrahigh-voltage XLPE Cable (대용량 XLPE 케이블 고찰)

  • Choi, Chang-Soo;Lee, Kab-Joong;Kwon, Byung-Il;Nam, Jeong-Se
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1356-1358
    • /
    • 1995
  • About 20 years have passed since cross-linked polyethylene(XLPE) came into practical use for power transmission cables. In 1969, We were the first to product 33kV XLPE insulated cables, and in 1984 produced XLPE cable for 154kV. To meet the increasing demand for electric power in large cities, and to improve reliability of the power supply, plans are being made to introduce ultrahigh-tension power cable for long distance underground lines in urban areas. Studies are currently under way to develop more than 154kV XLPE cables to meet increasing demand. In this paper presents the progress in the production and design of XLPE cables, and describes ways in which further improvements seems likely.

  • PDF

Development Status of MV Cable with Eco-friendly and High Heat Resistance

  • Jung, Yeon-ha;Lee, Byung-sung;Seo, In-jin;Kwon, Jung-ji;Sohn, Kwang-ik;Kim, Hyung-jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.55-59
    • /
    • 2016
  • In Europe, polypropylene-insulated HV class cable with high temperature and no cross-linking was commercialized following the MV class. Our company also started a study of the polypropylene-insulated cable in 2013 and was carried out thermal, physical and electrical test. In addition, polypropylene-insulated cable was tested for compatibility with conventional joints and terminations in emergency condition and the accelerated life test for verifying their design life is in progress. The results of this study will be used to establish a standard specification and operation conditions of the polypropylene-insulated cable.

A theoretical investigation on the temperature distribution of XLPE insulated cable for HV during curing prcess (고압 XLPE 절연 케이블의 가교공정중의 온도분포 계산에 대한 이론적 고찰)

  • Kang, T.O.;Kim, K.S.;Cheon, C.O.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1229-1231
    • /
    • 1995
  • XLPE cable, which has excellent electrical and thermal performance, has been widely used for HV transmission & distribution lines. The most important thing to produce the cable products having good performance is to set the optimal operating conditions of cable machinery. Because it is very difficult to measure the temperature of cable under curing process practically, it is necessary to evaluate the cable temperature by using the method to simulate real conditions numerically. In this work, We investigate the basic theory on transient heat transfer between curing tube and cable for making a numerical simulation program using computer. In this program, a differential equation is approximated by a infinite differential method and a few assumptions are used to simplify the model and minimize the calculation time of program.

  • PDF

Development of EHV 275KV XLPE Power Cable (초고압 275KV XLPE 케이블의 개발)

  • Kim, J.W.;Kim, H.K.;Park, K.H.;Lee, K.H.;Choi, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.903-906
    • /
    • 1992
  • At present the XLPE insulated power Cables have installed until 154KV level in KOREA. Therefore, our company has developed 275KV XLPE cable as a means 345KV level-up of CV cable as well as exploitation of overseas markets. In this paper, the outline of design standards, manufacturing processes and test performance of 275KV CV cable are described.

  • PDF

Efficiency appraisal of 22.9kV tree retardant power cable (22.9kV 트리억제형 전력케이블의 성능평가)

  • Kim, We-Young;Yun, Dae-Hyuk;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.179-182
    • /
    • 2002
  • XLPE compound have used for insulation of 22.9(kV) power cable. But tree retardant power cable has developed and is going to br used commonly. TR XLPE compound retard production and growth of water tree. In this paper, tensile strength, elongation at break, degree of crosslinking, lightning impulse test, AC breakdown test, cyclic aging for 14days and accelerated water treeing test of TR XLPE insulated power cable were examined according to the KEPCO buying spec. & AEIC CS 5-94 standards. before and after As the result, tensile strength, elongation at break and degree of crosslinking test results of TR XLPE insulation were higher than requirement values. After accelerated water treeing test for 120 days, 240 days and 360 days, AC breakdown voltages were not decreased for accelerated water treeing aging duration

  • PDF

Electrical Properties of 6.6kV Cable Termination by Mechanical Damage (기계적 손상에 따른 6.6kV케이블 종단부의 전기적 특성)

  • Baek, Seung-Myeong;Choi, JIn-Wook;Kim, Sang-Hyun;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1299_1300
    • /
    • 2009
  • We show results that examine about electrical properties of XLPE insulated 6.6kV cable termination by mechanical damage. The cable used to produce the cable termination is 6/10kV tray XLPE fire retardant electric cable (6/10kV TFR-CV $35SQMM{\times}1C$) which is domestically made. We apply force to XLPE insulator and made mechanical defect using knife. Defected samples go through the withstand voltage test according to the IEEE std. 48 test regulations and lighting impulse (hereunder, IMP) withstand voltage test regulations. Then the effects of the scars shown during the construction process on electric accidents at the end part are analyzed.

  • PDF