• Title/Summary/Keyword: X-ray structure analysis

Search Result 1,127, Processing Time 0.031 seconds

MOCVD Deposition of AlN Thin Film for Packaging Materials

  • Chang-Kyu, Ahna;Seung-Chul Choi;Seong-Hoon Cho;Sung-Hwan Han;Je-Hong Kyoung
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.118-118
    • /
    • 2000
  • New single-source precursor, [AlCI3:NH2tBu] was synthesized for AlN thin f film processing with AICI3 (Aluminum Chloride) and tBuNH2 (tert-butylamine). AlN thin films for packaging aspplication were deposited on sapphire substrate by a atmosph하ie-pressure MOCVD. In most of other study methyl-based AI precursors w were used for source, But herein Aluminum Chloride was used for as AI source i in order to prevent the carbon contamination in the films and stabilize the p precursor. New precursor showed the very high gas vapor pressure so it allowed to m make the film under atmospheric-pressure and get the high purified film. High q quality AlN thin film was obtained at 700 to $900^{\circ}C$. The new precursor was p purified by a sublimation technique and help to fabricate high purity film. It s showed high vapor pressure, which is able to a critieal factor for the high purity a and atmospheric CVD of AlN. High Quality AIN thin film was obtained at $700-900^{\circ}C$. The AIN film was characterized by RBS

  • PDF

The effect of organic matter on the removal of phosphorus through precipitation as struvite and calcium phosphate in synthetic dairy wastewater

  • Aleta, Prince;Parikh, Sanjai J.;Silchuk, Amy P.;Scow, Kate M.;Park, Minseung;Kim, Sungpyo
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.163-172
    • /
    • 2018
  • This study investigated the effect of organic matter on the precipitation of struvite and calcium phosphate for phosphorus recovery from synthetic dairy wastewater. Batch precipitation experiments were performed to precipitate phosphorus from solutions containing $PO_4{^{3-}}$ and $NH_4{^+}$ by the addition of $Mg^{2+}$ and $Ca^{2+}$, separately, at varying pH, Mg/P and Ca/P molar ratios, and organic matter concentrations. Soluble total organic solids exhibited more inhibition to precipitation due to potential interaction with other dissolved ionic species involved in phosphorus precipitation. Xylan with low total acidity only exhibited significant inhibition at very high concentrations in synthetic wastewater (at up to 100 g/L). No significant inhibition was observed for Mg and Ca precipitation at relatively lower concentrations (at up to 1.2 g/L). MINTEQ simulations show that dissolved organic matter (DOM) as humic substances (HS) can cause significant inhibition even at relatively low concentrations of 0.165 g/L fulvic acid. However, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis suggested that xylan altered the crystal structure of both precipitates and had caused the formation of smaller sized struvite crystals with slightly rougher surfaces This could be due to xylan molecules adhering on the surface of the crystal potentially blocking active sites and limit further crystal growth. Smaller particle sizes will have negative practical impact because of poorer settleability.

Preparation and Characterization of Visible Light-Sensitive N-doped TiO2 Using a Sol-gel Method (Sol-gel법을 이용한 백색도가 높은 가시광 응답형 N-doped TiO2 제조 및 특성 평가 연구)

  • Lee, NaRi;Yu, Ri;Kim, Tae Kwan;Pee, Jae-Hwan;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.477-482
    • /
    • 2017
  • Nitrogen-doped titanium dioxide (N-doped $TiO_2$) is attracting continuously increasing attention as a material for environmental photocatalysis. The N-atoms can occupy both interstitial and substitutional positions in the solid, with some evidence of a preference for interstitial sites. In this study, N-doped $TiO_2$ is prepared by the sol-gel method using $NH_4OH$ and $NH_4Cl$ as N ion doping agents, and the physical and photocatalytic properties with changes in the synthesis temperature and amount of agent are analyzed. The photocatalytic activities of the N-doped $TiO_2$ samples are evaluated based on the decomposition of methylene blue (MB) under visible-light irradiation. The addition of 5 wt% $NH_4Cl$ produces the best physical properties. As per the UV-vis analysis results, the N-doped $TiO_2$ exhibits a higher visible-light activity than the undoped $TiO_2$. The wavelength of the N-doped $TiO_2$ shifts to the visible-light region up to 412 nm. In addition, this sample shows MB removal of approximately 81%, with the whiteness increasing to +97 when the synthesis temperature is $600^{\circ}C$. The coloration and phase structure of the N-doped $TiO_2$ are characterized in detail using UV-vis, CIE Lab color parameter measurements, and powder X-ray diffraction (XRD).

Removal of Nitrate by modified Nanoscale Zero-Valent Iron (개질된 Nanoscale Zero-Valent Iron을 이용한 질산성질소 처리)

  • Kim, Hong-Seok;Ahn, Jun-Young;Hwang, Kyung-Yup;Park, Joo-Yang;Hwang, Inseong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.471-479
    • /
    • 2009
  • A Nanoscale Zero-Valent Iron(NZVI) was modified to build a reactor system to treat nitrate. Shell layer of the NZVI was modified by slow exposure of the iron surface to air flow, which produced NZVI particles that are resistant to aerial oxidation. A XANES (X-ray Absorption Near-Edge Structure) analysis revealed that the shell consists of magnetite ($Fe_3O_4$) dominantly. The shell-modified NZVI(0.5 g NZVI/ 120 mL) was able to degrade more than 95% of 30 mg/L of nitrate within $30 hr^{-1}$ ( pseudo first-order rate constant($k_{SA}$) normalzed to NZVI surface area ($17.96m^2/g$) : $0.0050L{\cdot}m^{-2}{\cdot}hr^{-1}$). Ammonia occupied about 90% of degradation products of nitrate. Nitrate degradation efficiencies increased with the increase of NZVI dose generally. Initial pH values of the reactor systems at 4, 7, and 10 did not affect nitrate removal rate and final pH values of all experiments were near 12. Nitrate removal experiments by using the shell-modified NZVI immobilized on a cellulose acetate (CA) membrane were also conducted. The nitrate removal efficiency of the CA membrane supported NZVI ($k_{SA}=0.0036L{\cdot}m^{-2}{\cdot}hr^{-1}$) was less than that of the NZVI slurries($k_{SA}=0.0050L{\cdot}m^{-2}{\cdot}hr^{-1}$), which is probably due to less surface area available for reduction and to kinetic retardation by nitrate transport through the CA membrane. The detachment of the NZVI from the CA membrane was minimal and impregnation of up to 1 g of NZVI onto 1 g of the CA membrane was found feasible.

The study on the Hydrogen Characteristics of MmNi4.5Mn0.5 Hydrogen Storage Alloy (MmNi4.5Mn0.5계 수소저장합금의 수소화 특성에 관한 연구)

  • Kang, Kil-Ku;Kang, Sei-Sun;Kwon, Ho-Young;Lee, Rhim-Youl
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.2
    • /
    • pp.151-158
    • /
    • 2002
  • The hydorgen storage alloys were produced by melting in arc melting furnace and then solution heat treated at $1,100^{\circ}C$ followed by pulverization. The chemical analysis on the samples showed that the major elements of misch metal(Mm) were La, Ce, Pr and Nd with impurity less than 1wt.%. X-ray diffraction indicated that the structure for these samples were a single phase of hexagonal with $CaCu_5$ type. Compared to the initial particle size $100{\sim}110{\mu}m$, the many fine cracks were found and particle size decreased to $14{\mu}m$ for $MmNi_{4.5}Mn_{0.5}$ after hydriding/dehydring test run. To activate the sample the vessel filled with hydrogen storage alloys was first evacuated for for at $70^{\circ}C$ and then treated for 10.5hr under hydrogen pressure of 20atm for $MmNi_{4.5}Mn_{0.5}$ alloy. The experimental data showed that the hydrogen storage alloy of $MmNi_{4.5}Mn_{0.5}$ had superior adsorption and description properties within a temperature rang of $40^{\circ}C{\sim}80^{\circ}C$ and also they had a good P-C-T curve.

A Study on Electro-oxidation of Ethanol with $Pt_5Ru_4M$(M= Ni, Sn, Mo and W) Ternary Electrocatalysts for Anode of Direct Ethanol Fuel Cell(DEFC) (직접 에탄올 연료전지(DEFC)의 anode용 삼원소 전극촉매[$Pt_5Ru_4M$(M= Ni, Sn, Mo and W)]의 에탄올 전기산화반응에 관한 연구)

  • Noh, Chang-Soo;Kang, Dae-Kyu;Sohn, Jung-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.5
    • /
    • pp.423-429
    • /
    • 2008
  • This work was carried out to improve the performance of anodic electrocatalysts in direct ethanol fuel cell(DEFC). PtRu and $Pt_5Ru_4M$(M= Ni, Sn, Mo and W) electrocatalysts were prepared by using a $NaBH_4$ reduction method. Alloy crystal structure and particle size of electrocatalysts were characterized by X-ray diffraction(XRD) and transmission electron microscopy(TEM). The XRD analysis of the electrocatalysts revealed that the face-centered cubic(fcc) peaks shifted to slightly higher diffraction angles when third metals were added. Average size of the uniform particles was observed to be approximately $3{\sim}3.5\;nm$ from the TEM image. The electrochemical measurements were carried out in the solution 1M $H_2SO_4$ and 1M $C_2H_5OH$ at room temperature. Cyclic-voltammogram results showed that $Pt_5Ru_4W$ electrocatalyst exhibited much higher current density for ethanol oxidation of $2.73\;mA/cm^2$ than PtRu electrocatalyst of $0.73\;mA/cm^2$.

Characteristics of Polycrystalline β-SiC Films Deposited by LPCVD with Different Doping Concentration

  • Noh, Sang-Soo;Lee, Eung-Ahn;Fu, Xiaoan;Li, Chen;Mehregany, Mehran
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.245-248
    • /
    • 2005
  • The physical and electrical properties of polycrystalline $\beta$-SiC were studied according to different nitrogen doping concentration. Nitrogen-doped SiC films were deposited by LPCVD(1ow pressure chemical vapor deposition) at $900^{\circ}C$ and 2 torr using $100\%\;H_2SiCl_2$ (35 sccm) and $5 \%\;C_2H_2$ in $H_2$(180 sccm) as the Si and C precursors, and $1\%\;NH_3$ in $H_2$(20-100 sccm) as the dopant source gas. The resistivity of SiC films decreased from $1.466{\Omega}{\cdot}cm$ with $NH_3$ of 20 sccm to $0.0358{\Omega}{\cdot}cm$ with 100 sccm. The surface roughness and crystalline structure of $\beta$-SiC did not depend upon the dopant concentration. The average surface roughness for each sample 19-21 nm and the average surface grain size is 165 nm. The peaks of SiC(111), SiC(220), SiC(311) and SiC(222) appeared in polycrystalline $\beta$-SiC films deposited on $Si/SiO_2$ substrate in XRD(X-ray diffraction) analysis. Resistance of nitrogen-doped SiC films decreased with increasing temperature. The variation of resistance ratio is much bigger in low doping, but the linearity of temperature dependent resistance variation is better in high doping. In case of SiC films deposited with 20 sccm and 100 sccm of $1\%\;NH_3$, the average of TCR(temperature coefficient of resistance) is -3456.1 ppm/$^{\circ}C$ and -1171.5 ppm/$^{\circ}C$, respectively.

Detecting Incipient Caries Using Front-illuminated Infrared Light Scattering Imaging

  • Kim, Ji-Young;Ro, Jung-Hoon;Jeon, Gye-Rok;Kim, Jin-Bom;Ye, Soo-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.310-316
    • /
    • 2012
  • A new method for early caries diagnosis was proposed and tested through a home-made optical examination system that used quantitative light fluorescence (QLF) and digital imaging fiber optic transillumination (FOTI) (DIFOTI), with light sources across a wide spectral range, from 350 nm to 1,000 nm. The front-illuminated infrared light scattering image (FIR) showed similar diagnostic abilities to that of DIFOTI. The FIR method was invented based on the observation that caries lesions lose the high transmittance and low scattering properties of benign enamel tissue. There are various methods for the early diagnosis of caries, such as visual examination, exploration, X-ray radiography, QLF, FOTI, and infrared fluorescence (diagnodent). Among them, methods based on optical properties are regarded as having the most potential. A comparative study was performed between the FOTI, QLF, diagnodent, optical coherence tomography, and FIR scattering image methods, using 20 extracted teeth samples with early caries. A scale of lesion measurement based on optical image contrast was proposed. The statistical analysis showed a significant correlation between the DIFOTI and FIR methods (r = 0.35, p < 0.05). However, the QLF and diagnodent methods showed little association with FIR images, as they have different detection principles as compared with FIR. Tomographic images obtained by OCT, using 1,330 nm super luminescent LED as a gold standard of tooth structure, verified that the FOTI and FIR results correctly represented the lack of homogeneity in dental tissue. The newly proposed FIR method attained similar diagnostic results to those of FOTI, but with an easier approach.

Synthesis, Reaction and Antiviral Activity of 2,4-Diaryl-1,3-selenazoles (합성, 2,4-Diaryl-1,3-selenazoles의 항바이러스 활성도와 반응)

  • Al-Rubaie, Ali Z.;Al-Masoudi, Wasfi A.;Hameed, Ali Jameel;Yousif, Lina Z.;Graia, Mohsen
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.36-46
    • /
    • 2008
  • cyclization of primary arylselenocarboxylic amides with a-bromoketones afforded a variety of new 2,4-diaryl-1,3-selenazoles. Halogenation of the 2,4-diaryl-1,3-selenazoles with chlorine, bromine and iodine gave the new 1,1-dihalo-2,4-diaryl-1,3-selenazoles in good yields. Antiviral activity of some 1,1-dihalo-2,4-diaryl-1,3-selenazoles has been tested against AIDS virus (HIV-1 and HIV-2). They showed some bioactivity against HIV-1. All compounds were characterized by their elemental analysis, 1H NMR and mass spectroscopic data. The crystal structure of 2-(3,4-dimethoxyphenyl)-4-(4-bromophenyl)-1,3-selenazole displays the molecular configuration.

In-situ spectroscopic studies of SOFC cathode materials

  • Ju, Jong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • In-situ X-ray photoelectron spectroscopy (XPS) and infrared (IR) spectroscopy studies of SOFC cathode materials will be discussed in this presentation. The mixed conducting perovskites (ABO3) containing rare and alkaline earth metals on the A-site and a transition metal on the B-site are commonly used as cathodes for solid oxide fuel cells (SOFC). However, the details of the oxygen reduction reaction are still not clearly understood. The information about the type of adsorbed oxygen species and their concentration is important for a mechanistic understanding of the oxygen incorporation into these cathode materials. XPS has been widely used for the analysis of adsorbed species and surface structure. However, the conventional XPS experiments have the severe drawback to operate at room temperature and with the sample under ultrahigh vacuum (UHV) conditions, which is far from the relevant conditions of SOFC operation. The disadvantages of conventional XPS can be overcome to a large extent with a "high pressure" XPS setup installed at the BESSY II synchrotron. It allows sample depth profiling over 2 nm without sputtering by variation of the excitation energy, and most importantly measurements under a residual gas pressure in the mbar range. It is also well known that the catalytic activity for the oxygen reduction is very sensitive to their electrical conductivity and oxygen nonstoichiometry. Although the electrical conductivity of perovskite oxides has been intensively studied as a function of temperature or oxygen partial pressure (Po2), in-situ measurements of the conductivity of these materials in contact with the electrolyte as a SOFC configuration have little been reported. In order to measure the in-plane conductivity of an electrode film on the electrolyte, a substrate with high resistance is required for excluding the leakage current of the substrate. It is also hardly possible to measure the conductivity of cracked thin film by electrical methods. In this study, we report the electrical conductivity of perovskite $La_{0.6}Sr_{0.4}CoO_{3-{\delta}}$ (LSC) thin films on yttria-stabilized zirconia (YSZ) electrolyte quantitatively obtained by in-situ IR spectroscopy. This method enables a reliable measurement of the electronic conductivity of the electrodes as part of the SOFC configuration regardless of leakage current to the substrate and cracks in the film.

  • PDF