DOI QR코드

DOI QR Code

Preparation and Characterization of Visible Light-Sensitive N-doped TiO2 Using a Sol-gel Method

Sol-gel법을 이용한 백색도가 높은 가시광 응답형 N-doped TiO2 제조 및 특성 평가 연구

  • Lee, NaRi (Ceramic Ware Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yu, Ri (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Tae Kwan (Nanotae) ;
  • Pee, Jae-Hwan (Ceramic Ware Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, YooJin (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 이나리 (한국세라믹기술원 도자세라믹센터) ;
  • 유리 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 김태관 (나노태) ;
  • 피재환 (한국세라믹기술원 도자세라믹센터) ;
  • 김유진 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2017.11.21
  • Accepted : 2017.12.15
  • Published : 2017.12.28

Abstract

Nitrogen-doped titanium dioxide (N-doped $TiO_2$) is attracting continuously increasing attention as a material for environmental photocatalysis. The N-atoms can occupy both interstitial and substitutional positions in the solid, with some evidence of a preference for interstitial sites. In this study, N-doped $TiO_2$ is prepared by the sol-gel method using $NH_4OH$ and $NH_4Cl$ as N ion doping agents, and the physical and photocatalytic properties with changes in the synthesis temperature and amount of agent are analyzed. The photocatalytic activities of the N-doped $TiO_2$ samples are evaluated based on the decomposition of methylene blue (MB) under visible-light irradiation. The addition of 5 wt% $NH_4Cl$ produces the best physical properties. As per the UV-vis analysis results, the N-doped $TiO_2$ exhibits a higher visible-light activity than the undoped $TiO_2$. The wavelength of the N-doped $TiO_2$ shifts to the visible-light region up to 412 nm. In addition, this sample shows MB removal of approximately 81%, with the whiteness increasing to +97 when the synthesis temperature is $600^{\circ}C$. The coloration and phase structure of the N-doped $TiO_2$ are characterized in detail using UV-vis, CIE Lab color parameter measurements, and powder X-ray diffraction (XRD).

Keywords

References

  1. D. M. Tobaldi, R. C. Pullar, A. F. Gualtieri, G. Otero-Irurueta, M. K. Singh, M. P. Seabra and J. A. Labrincha: J. Solid State Chem., 231 (2015) 87. https://doi.org/10.1016/j.jssc.2015.08.008
  2. C. Di Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M. C. Paganini and E. Giamello: Chem. Phys., 339 (2007) 44. https://doi.org/10.1016/j.chemphys.2007.07.020
  3. D. Bahenemann, D. Bockelmann and R. Goslich: Sol. Energ. Mater., 24 (1991) 564. https://doi.org/10.1016/0165-1633(91)90091-X
  4. M. C. Yeber, J. Rodrguez, J. Freer, J. Baeza, N. Durn and H. D. Mansilla: Chemosphere, 39 (1999) 1679. https://doi.org/10.1016/S0045-6535(99)00068-5
  5. A. L. Linsebigler, G. Lu and J. T. Yates: Chem. Rev., 95 (1995) 735. https://doi.org/10.1021/cr00035a013
  6. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann: Chem. Rev., 95 (1995) 69. https://doi.org/10.1021/cr00033a004
  7. T. L. Thompson and J. T. Yates: Chem. Rev., 106 (2006) 4428. https://doi.org/10.1021/cr050172k
  8. J. M. Hermann, C. Duchamp, M. Karkmaz, B. T. Hoai, H. Lachheb, E. Puzenat and C. Guillard : J. Hazard. Mater., 146 (2007) 624. https://doi.org/10.1016/j.jhazmat.2007.04.095
  9. M. V. Rao, K. Rajeshwar, V. R. Vernerker and J. Dubow: J. Phys. Chem., 84 (1980) 1987. https://doi.org/10.1021/j100452a023
  10. G. K. Boschloo, A. Goossens and J. Schoonman: J. Electroanal. Chem., 428 (1997) 25. https://doi.org/10.1016/S0022-0728(97)00037-5
  11. Y. Ishibai, J. Sato, T. Nishikawa and S. Miyagishi: Appl. Catal. B, 79 (2008) 117. https://doi.org/10.1016/j.apcatb.2007.09.040
  12. W. Choi, A. Termin and M. R. Hoffmann: J. Phys. Chem., 98 (1994) 13669. https://doi.org/10.1021/j100102a038
  13. C. H. Huang, I. K. Wang, Y. M. Lin, Y. H. Tseng and C. M. Lu: J. Mol. Catal. A. Chem., 316 (2010) 163. https://doi.org/10.1016/j.molcata.2009.10.015
  14. S. T. Martin, C. L. Morrison and M. R. Hoffmann: J. Phys. Chem., 98 (1994) 13695. https://doi.org/10.1021/j100102a041
  15. L. Palmisano, V. Augugliaro, A. Sclafani and M. Schiavello: J. Phys. Chem., 92 (1988) 6710. https://doi.org/10.1021/j100334a044
  16. J. Zhu, W. Zheng, B. He, J. Zhang and M. Anpo: J. Mol. Catal. A. Chem., 216 (2004) 35. https://doi.org/10.1016/j.molcata.2004.01.008
  17. F. T. G. Vieira, D. S. Melo, S. J. G. Lima, E. Longo, C. A. Paskocimas, W. S. Junior and A. G. Souza: Mater. Res. Bull., 44 (2009) 1086. https://doi.org/10.1016/j.materresbull.2008.10.007
  18. E. M. Samsudin and S. B. A. Hamid: Appl. Surf. Sci., 391 (2017) 326. https://doi.org/10.1016/j.apsusc.2016.07.007
  19. K. Nakata and A. Fujishima: J. Photochem. Photobiol. C Rev., 13 (2012) 169. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
  20. C. D. Valentin, E. Finazzi, G. Pacchioni, A. Selloni, S. Livraghi, M. C. Paganini and E. Giamello: Chem. Phys., 339 (2007) 44. https://doi.org/10.1016/j.chemphys.2007.07.020
  21. S. Y. Lim, T. D. N-Phan and E. W. Shin: Appl. Chem. Eng., 22 (2011) 61.
  22. J. D. Cunha, D. M. A. Melo, A. E. Martinelli, M. A. F. Melo, I. Maia and S. D. Cunha: Dyes Pigm., 65 (2005) 11. https://doi.org/10.1016/j.dyepig.2004.06.005
  23. S. M. Chin, E. S. Park, M. S. Kim and J. S. Jurng : Powder Technol., 201 (2010) 171. https://doi.org/10.1016/j.powtec.2010.03.034
  24. G. Munjal, G. Dwivedi and A. N. Bhaskarwar : Int. Proc. Chem. Biol. Environ. Eng., 90 (2015) 82.
  25. M. Henry, J. P. Jolivet and J. Livage: Chemistry Spectroscopy and Applications of Sol-Gel Glasses, Springer, Berlin, 77 (1992) 153.