• 제목/요약/키워드: X-ray photoemission spectroscopy

검색결과 74건 처리시간 0.045초

양이온 결손 La$_{0.970}$Mn$_{0.970}$O$_3$의 X-ray Photoemission Spectroscopy 관측 (X-ray Photoemission Spectroscopy Study of Cation-Deficient La$_{0.970}$Mn$_{0.970}$O$_3$ System)

  • 정우환
    • 한국세라믹학회지
    • /
    • 제36권1호
    • /
    • pp.50-54
    • /
    • 1999
  • 양이온 결손 La0.970Mn0.970O3의 x-ray photoemission spectroscopy를 온도를 함수로 측정하였다. 온도의 변화에 따라서 Mn 2p와 3d core level의 화학적 변동 및 이동이 관측되었다. 즉 Mn 2p 3/2와 1/2 및 La 3d core 스펙트럼은 온도의 증가와 함께 저 결합 에너지 측으로 이동이 관측되었다. 이러한 XPS 관측 결과는 Mn3+의 localization의 강도 변화에 의한 것으로 사료되며, Mn3+에 의한 Jahn-Teller효과 이외에도 conventional random potential 효과 역시 La0.790Mn0.970O3의 전도 carrier의 localization에 기여하는 것으로 사료된다.

  • PDF

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • 박진우;임종태;염근영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF

Brief Introduction to Angle-Resolved Photoemission Spectroscopy

  • 김형도
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.82-82
    • /
    • 2012
  • Angle-resolved photoemission spectroscopy (ARPES) is a powerful tool to investigate the electronic structure of a single-crystalline solid. After the development of a two-dimensional electron detector, it became a basic experimental method in solid state physics comparable to other powerful tools such as x-ray and neutron scatterings. In this tutorial, I talk briefly on the basic principle of ARPES and its recent and future direction of development.

  • PDF

Probing the Molecular Orientation of ZnPc on AZO Using Soft X-ray Spectroscopies for Organic Photovoltaic Applications

  • Jung, Yunwoo;Lee, Nalae;Kim, Jonghoon;Im, Yeong Ji;Cho, Sang Wan
    • Applied Science and Convergence Technology
    • /
    • 제24권5호
    • /
    • pp.151-155
    • /
    • 2015
  • The interfacial electronic structure between zinc phthalocyanine (ZnPc) and aluminumdoped zinc oxide (AZO) substrates has been evaluated by ultraviolet photoemission spectroscopy and angle-dependent x-ray absorption spectroscopy to understanding the molecular orientation of a ZnPc layer on the performance of small molecule organic photovoltaics (OPVs). We find that the ZnPc tilt angle improves the ${\pi}-{\pi}$ interaction on the AZO substrate, thus leading to an improved short-circuit current in OPVs based on phthalocyanine. Furthermore, the molecular orientation-dependent energy level alignment has been analyzed in detail using ultraviolet photoemission spectroscopy. We also obtained complete energy level diagrams of ZnPc/AZO and ZnPc/indium thin oxide.

In Situ X-ray Photoemission Spectroscopy Study of Atomic Layer Deposition of $TiO_2$ on Silicon Substrate

  • Lee, Seung-Youb;Jeon, Cheol-ho;Kim, Yoo-Seok;Kim, Seok-Hwan;An, Ki-Seok;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.222-222
    • /
    • 2011
  • Titanium dioxide (TiO2) has a number of applications in optics and electronics due to its superior properties, such as physical and chemical stability, high refractive index, good transmission in vis and NIR regions, and high dielectric constant. Atomic layer deposition (ALD), also called atomic layer epitaxy, can be regarded as a special modification of the chemical vapor deposition method. ALD is a pulsed method in which the reactant vapors are alternately supplied onto the substrate. During each pulse, the precursors chemisorb or react with the surface groups. When the process conditions are suitably chosen, the film growth proceeds by alternate saturative surface reactions and is thus self-limiting. This makes it possible to cover even complex shaped objects with a uniform film. It is also possible to control the film thickness accurately simply by controlling the number of pulsing cycles repeated. We have investigated the ALD of TiO2 at 100$^{\circ}C$ using precursors titanium tetra-isopropoxide (TTIP) and H2O on -O, -OH terminated Si surface by in situ X-ray photoemission spectroscopy. ALD reactions with TTIP were performed on the H2O-dosed Si substrate at 100$^{\circ}C$, where one cycle was completed. The number of ALD cycles was increased by repeated deposition of H2O and TTIP at 100$^{\circ}C$. After precursor exposure, the samples were transferred under vacuum from the reaction chamber to the UHV chamber at room temperature for in situ XPS analysis. The XPS instrument included a hemispherical analyzer (ALPHA 110) and a monochromatic X-ray source generated by exciting Al K${\alpha}$ radiation (h${\nu}$=1486.6 eV).

  • PDF

Interfacial Electronic Structure of Bathocuproine and Al: Theoretical Study and Photoemission Spectroscopy

  • Lee, Jeihyun;Kim, Hyein;Shin, Dongguen;Lee, Younjoo;Park, Soohyung;Yoo, Jisu;Jeong, Junkyeong;Hyun, Gyeongho;Jeong, Kwangho;Yi, Yeonjin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.169-169
    • /
    • 2014
  • Interfacial electronic structure of bathocuproine and Al was investigated using in-situ photoemission spectroscopy and density functional theory (DFT) calculations. Bathocuproine is used for exciton blocking and electron transport material in organic photovoltaics and Al is typical cathode material. When thin thickness of Al was thermally evaporated on BCP, gap states were observed by ultraviolet photoemission spectroscopy. The closest gap state yielded below 0.3 eV from Fermi level. By x-ray photoemission spectroscopy, interaction of Al with nitrogen of BCP was observed. To understand the origin of gap states, DFT calculation was carried out and gap states was verified with successive calculation of interaction of Al and nitrogen of BCP. Furthermore, emergency of another state above Fermi level was observed. Remarkable reduction of electron injection barrier between Al and BCP, therefore, is possible.

  • PDF

Charge Transfer Mechanism of Electrically Bistable Switching Devices based on Polyimide

  • 이경재;임규욱;김동민;이문호;강태희;정석민
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.374-374
    • /
    • 2010
  • Charge transfer mechanism of poly(4,4'-aminotriphenylene hexafluoroisopropylidenediphthalimide) (TP6F PI) which exhibits bistable ON and OFF switching has been studied using photoemission electron spectroscopy (PES) and near-edge x-ray absorption fine structure (NEXAFS). Here, we demonstrate novel set-up in which holes are injected by photoemission process instead of direct charge carrier injection via metal electrode. The accumulated charges on the PI surface in the OFF state abruptly flow across the PI film when the bias voltage of a back electrode reaches a specific value, indicating that the film is changed to the ON state. Core level and x-ray absorption spectra probed at charge injection region via photoemission process do not show any evidences implying structural modification of TP6F PI during the phase change. Whereas, in valence band spectra, the highest occupied molecular orbital (HOMO) is shifted toward Fermi level, responsible for improved hole-mobility of TP6F PI of ON state.

  • PDF

단결정 그라핀 위에서의 퓨란의 고리모양 형성 (Ring Formation of Furan on Epitaxial Graphene)

  • 김기정;양세나;박영찬;이한구;김봉수;이한길
    • 한국진공학회지
    • /
    • 제20권4호
    • /
    • pp.252-257
    • /
    • 2011
  • 본 연구 그룹은 6H-SiC (0001)에서 성장시킨 그라핀 층에 흡착된 퓨란(furan)의 고리 형성과 전자적 성질을 원자 힘 현미경(Atomic Force Microscope : AFM), C K-edge에 대한 Near Edge X-ray Absorption Fine Structure (NEXAFS) 스펙트럼, 핵심부 준위 광전자 분광스펙트럼(Core-level Photoemission Spectroscopy : CLPES)을 이용하여 연구했다. 우리는 그라핀위에 흡착된 퓨란 분자들이 화학적 도핑이 가능한 산소기의 홀 전자쌍을 통하여 그라핀의 특성을 조절할 수 있는 화학적 기능화에 이용될 수 있다는 것을 알아냈다. 또한, 퓨란이 자발적으로 세 가지의 다른 결합 구조들 중 하나로 고리를 형성한다는 것과 그라핀 위에 퓨란에 의해 형성된 고리의 전자적 성질들이 AFM, NEXAFS, CLPES를 이용하여 각각 설명될 수 있다는 것을 보여주었다.