• 제목/요약/키워드: X-ray microscopy

검색결과 3,210건 처리시간 0.03초

에치슨법에 의한 탄화규소 휘스카의 성장과 특성분석 (Formation and Characterization of Silicon Carbide Whiskers by Acheson Method)

  • 주한용;김형준
    • 한국세라믹학회지
    • /
    • 제27권1호
    • /
    • pp.136-146
    • /
    • 1990
  • Whiskers of SiC were grown from the mixture of silica and graphite powders by Acheson method(direct heating method). The structrua, morphological and chemical characterizations have been performed by X-ray diffractometer(XRD), transmission electron microscopy(TEM), optical microscopy(OM), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS) and energy dispersive spectrometer(EDS). The growth mechanism of SiC whiskers is also discussed.

  • PDF

광전자 분광현미경학 (Photoelectron spectro-microscopy/Scanning photoelectron microscopy (SPEM))

  • 신현준
    • 진공이야기
    • /
    • 제3권4호
    • /
    • pp.8-13
    • /
    • 2016
  • The need of space-resolved x-ray photoelectron spectroscopy (XPS) has developed scanning photoelectron microscopy (SPEM). SPEM provides space-resolved XPS data from a spot of a sample as well as images of specific element, chemical state, valency distribution on the surface of a sample. Based on technical advancement of tight x-ray focusing, sample positioning accuracy, and electron analyzer efficiency, SPEM is now capable of providing ~100 nm space resolution for typical XPS functionality, and SPEM has become actively applied for the investigation of chemical state, valency, and electronic structure on the surface of newly discovered materials, such as graphene layers, dichalcogenide 2D-materials, and heterogenous new functional materials.

연 X-선 현미경을 이용한 금 나노입자 세포영상 (Cellular Imaging of Gold Nanoparticles Using a Compact Soft X-Ray Microscope)

  • 권영만;김한경;김경우;김선희;윤홍화;천권수;강성훈;박성훈;정선관;윤권하
    • Applied Microscopy
    • /
    • 제38권3호
    • /
    • pp.235-243
    • /
    • 2008
  • 연 x-선 현미경은 '물의 창' 영역 ($2.3{\sim}4.4nm$)의 파장을 이용하여, 수십 nm의 분해능으로 세포를 파괴하지 않고 살아있는 상태에서 세포의 내부구조를 관찰할 수 있어 가시광선현미경과 전자현미경을 단점을 보완하는 특징을 갖는 세포 생물학 연구에 적합한 현미경이다. 그러나 기존 연 x-선 현미경은 광원으로 방사선 가속기를 이용하기 때문에 사용이 제한적이었다. 이에, 본 연구에서는 2.88nm의 연 x-선을 광원으로 사용하는 소형 연 x-선 현미경을 이용하여, 내포작용에 의해 금 나노입자를 포획한 HT1080과 MDA-MB 231 세포의 영상을 약 60nm 분해능으로 획득하였다. 금 나노입자의 세포에 대한 독성을 제거하기 위하여 폴리에틸렌 글리콜을 캡핑하였고, 2.88nm 파장의 연 x-선에 대하여 충분한 조영효과로 인하여 세포영상에서 뚜렷한 대조도를 나타내었다. 내포작용에 의해 액포에 포함되어 있는 다양한 크기의 금 나노입자 군집을 확인하였으며, 세포내부의 액포의 분포상태도 관찰할 수 있었다. 따라서 고분해능을 가진 소형 연 x-선 현미경을 이용하여 금 나노입자를 세포내의 미세기관이나 특정 단백질에 표지하면 연 x-선에 대한 조영효과의 증가에 의하여 더욱 유용한 정보를 획득할 수 있을 것으로 생각한다.

시화지구 연약점토의 광물학적 특성과 공학적 특성의 상관관계 (The Correlations between Mineralogy and Engineering Characteristics of Soft Clay in Sihwa Area)

  • 김낙경;박종식;주용선
    • 한국지반공학회논문집
    • /
    • 제20권9호
    • /
    • pp.155-166
    • /
    • 2004
  • 국내 연약지반 활용을 위한 효율적이고 경제적인 안정처리 공법의 선정과 설계 및 시공을 위해서는 대상지반의 특성을 파악하는 것이 대단히 중요하다. 본 연구는 시화지구 연약점토의 물리적, 역학적 특성과 광물학적 특성을 파악하여 연약점토의 물리적, 역학적 특성과 광물학적 특성과의 상관관계를 알아보는 데 그 목적이 있다. 본 연구에서 는 연약점토의 광물학적 특성을 파악하기 위하여 X선 형광분석, X선 회절분석, 주사전자현미경분석과 에너지분산미분석 실험을 실시하였으며 시화지구 연약지반의 시추조사결과, 실내시험 및 현장시험결과와의 상관관계를 알아보았다. 또한 시화지구 연약점토의 특성을 양산과 군산 지역 연약점토의 특성과 비교하였다.

The Synthesis of Maghemite and Hematite Nanospheres

  • Dar, Mushtaq Ahmad;Ansari, Shafeeque G.;Wahab, Rizwan;Kim, Young-Soon;Shin, Hyung-Shik
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.472-473
    • /
    • 2006
  • Maghemite and hematite nanospheres were synthesized by using the Sol-gel technique. The structural properties of these nanosphere powders were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and pore size distribution. Hematite phase shows crystalline structures. The mean particle size that resulted from BET and XRD analyses were 4.9 nm and 2 nm. It can be seen from transmission electron microscopy that the size of the particles are very small which is in good agreement with the FESEM and the X-ray diffraction. The BET and pore size method were employed for specific surface area determination.

  • PDF

High Resolution Magnetic X-ray Microscopy Study of the Magnetization Reversal in CoCrPt Alloy Thin Films

  • Im, Mi-Young;Fischer, Peter;Eimiiller, Thomas;Shin, Sung-Chul
    • Journal of Magnetics
    • /
    • 제9권3호
    • /
    • pp.75-78
    • /
    • 2004
  • Magnetic transmission soft X-ray microscopy has been used to study element-specifically the magnetization reversal behavior of ${(Co_{84}Cr_{16})}_{87}Pt_{l3}$ alloy thin films with a lateral resolution of 35 nm. Our results indicate that the magnetization switching is carried out by a random nucleation process that can be attributed to the reversal of individual grains. We found evidence of a large distribution of the switching fields at the nanogranular length scale, which has to be considered seriously for applications of CoCrPt systems as magnetic high density storage materials.

Mössbauer Spectroscopic Studies of NiZn Ferrite Prepared by the Sol-Gel Method

  • Niyaifar, Mohammad;Mohammadpour, Hory;Rodriguez, Anselmo F.R.
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.246-251
    • /
    • 2015
  • This study was aimed to study the effect of Zn content on the hyperfine parameters and the structural variation of $Ni_{1-x}Zn_xFe_2O_4$ for x = 0, 0.2, 0.4, 0.6, and 0.8. To achieve this, a sol-gel route was used for the preparation of samples and the obtained ferrites were investigated by X-ray diffraction, scanning electron microscopy, and $M{\ddot{o}}ssbauer$ spectroscopy. The formation of spinel phase without any impurity peak was identified by X-ray diffraction of all the samples. Moreover, the estimated crystallite size by X-ray line broadening indicates a decrease with increasing Zn content. This result was in agreement with the scanning electron microscopy result, indicating the reduction in grain growth with further zinc substitution. The room-temperature $M{\ddot{o}}ssbauer$ spectra show that the hyperfine fields at both the A and B sites decreased with increasing Zn content; however, the rate of reduction is not the same for different sites. Moreover, the best fit parameter showed that the quadrupole splitting values of B site increased from the pure nickel ferrite to the sample with x = 0.8.

X-ray Micro-Imaging 기법 소개 및 불투명 튜브 내부의 마이크로 버블 가시화 연구 (X-ray Micro-Imaging Technique and Its Application to Micro-Bubbles in an Opaque Tube)

  • 이상준;김석;백부근
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.31-34
    • /
    • 2002
  • Imaging techniques using x-ray beam at high energies (>6KeV) such as contact radiography, projection microscopy, and tomography have been used to nondestructively discern internal structure of objects in material science, biology, and medicine. This paper introduces the x-ray micro-imaging method using 1B2 micro-probe line of PAL (Pohang Accelerator Laboratory). Cross-sectional information on low electron density materials can be obtained by probing a sample with coherent synchrotron x-ray beam in an in-line holography setup. Living organism such as plants, insects are practically transparent to high energy x-rays and create phase shift images of x-ray wave front. X-ray micro-images of micro-bubbles of $20\~120\;{\mu}m$ diameter in an opaque tube were recorded. Clear phase contrast images were obtained at Interfaces between bubbles and surrounding liquid due to different decrements of refractive index.

  • PDF

Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

  • Chae, Sejung R.;Moon, Juhyuk;Yoon, Seyoon;Bae, Sungchul;Levitz, Pierre;Winarski, Robert;Monteiro, Paulo J.M.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권2호
    • /
    • pp.95-110
    • /
    • 2013
  • We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three dimensions revealing volumetric details. Scanning transmission X-ray microscope combines high spatial resolution imaging with high spectral resolution of the incident beam to reveal X-ray absorption near edge structure variations in the material nanostructure. Microdiffraction scans the surface of a sample to map its high order reflection or crystallographic variations with a micron-sized incident beam. High pressure X-ray diffraction measures compressibility of pure phase materials. Unique results of studies using the above tools are discussed-a study of pores, connectivity, and morphology of a 2,000 year old concrete using nanotomography; detection of localized and varying silicate chain depolymerization in Al-substituted tobermorite, and quantification of monosulfate distribution in tricalcium aluminate hydration using scanning transmission X-ray microscopy; detection and mapping of hydration products in high volume fly ash paste using microdiffraction; and determination of mechanical properties of various AFm phases using high pressure X-ray diffraction.

Absorption Spectroscopy of Biological Specimens Near X-ray Absorption Edges of Constituent Elements

  • Ito, Atsushi;Shinohara, Kunio
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.460-462
    • /
    • 2002
  • Absorption spectra of biological specimens in the soft X-ray region have been presented with special reference to the XANES (X-ray absorption Near Edge Structure) of constituent elements. Absorption spectrum in this wavelength region is characterized by the absorption edges from which elemental content could be derived. In addition, XANES has a characteristic profile for chemical environment around the element such as chemical bond. Using the specific absorption peak we can assign not only the chemical bond but also molecules having such a chemical bond. In the present paper, absorption spectrum of DNA was measured in the wavelength range from 1.5nm to 5nm. Spectrum of Chinese Hamster Ovary (CHO) cells was compared with the DNA spectrum. XANES were distinct at the K absorption edges of major elements, C, N and O. In the spectrum of the cells prominent peaks at the L absorption edge of minor element Ca were also detectable. XANES profiles in small local areas in a cell could also be measured in combination with X-ray microscopy. These give information about local chemical environment in a cell. XANES at the phosphorus K absorption edge in a human HeLa cell was successfully obtained corresponding to a sharp and intensive XANES peak of DNA.

  • PDF