Browse > Article
http://dx.doi.org/10.4283/JMAG.2015.20.3.246

Mössbauer Spectroscopic Studies of NiZn Ferrite Prepared by the Sol-Gel Method  

Niyaifar, Mohammad (Department of Physics, Ahvaz Branch, Islamic Azad University)
Mohammadpour, Hory (Department of Physics, Ahvaz Branch, Islamic Azad University)
Rodriguez, Anselmo F.R. (Universidade Federal do Acre, Centro de Ciencias Biologicas e da Natureza Rio Branco)
Publication Information
Abstract
This study was aimed to study the effect of Zn content on the hyperfine parameters and the structural variation of $Ni_{1-x}Zn_xFe_2O_4$ for x = 0, 0.2, 0.4, 0.6, and 0.8. To achieve this, a sol-gel route was used for the preparation of samples and the obtained ferrites were investigated by X-ray diffraction, scanning electron microscopy, and $M{\ddot{o}}ssbauer$ spectroscopy. The formation of spinel phase without any impurity peak was identified by X-ray diffraction of all the samples. Moreover, the estimated crystallite size by X-ray line broadening indicates a decrease with increasing Zn content. This result was in agreement with the scanning electron microscopy result, indicating the reduction in grain growth with further zinc substitution. The room-temperature $M{\ddot{o}}ssbauer$ spectra show that the hyperfine fields at both the A and B sites decreased with increasing Zn content; however, the rate of reduction is not the same for different sites. Moreover, the best fit parameter showed that the quadrupole splitting values of B site increased from the pure nickel ferrite to the sample with x = 0.8.
Keywords
Ni-Zn ferrite; $M{\ddot{o}}ssbauer$ spectroscopy; scanning electron microscopy; sol-gel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. M. Mallapur, P. A. Shaikh, R. C. Kambale, H. V. Jamadar, P. U. Mahamuni, and B. K. Chougule, J. Alloys Compd. 479, 797 (2009).   DOI   ScienceOn
2 M. Ishaque, M. U. Islam, M. A. Khan, I. Z. Rahman, A. Genson, and S. Hampshire, Physica B 405, 1532 (2010).   DOI   ScienceOn
3 R. Valenzuela, Phys. Res. Int. 2012, 1 (2012).
4 P. Yadoji, R. Peelamedu, D. Agrawal, and R. Roy, Mater. Sci. Eng. B 98, 269 (2003).   DOI   ScienceOn
5 A. M. Shaikh, C. M. Kanmadi, and B. K. Chougule, J. Mater. Chem. Phys. 93, 548 (2005).   DOI   ScienceOn
6 T. Nakamura, J. Magn. Magn. Mater. 168, 285 (1997).   DOI   ScienceOn
7 T. Tsutaoka, J. Appl. Phys. 93, 2789 (2003).   DOI   ScienceOn
8 M. F. F. Lelis, A. O. Porto, C. M. Goncalves, and J. D. Fabris, J. Magn. Magn. Mater. 278, 263 (2004).   DOI   ScienceOn
9 C. M. B. Henderson, J. M. Charnock, and D. A. Plant, J. Phys.: Condens. Matter 19, 076214/1 (2007).
10 M. M. Rashad, E. M. Elsayed, M. M. Moharam, and R. M. Abou-Shahba, A. E. Saba, J. Alloys. Compd. 486, 759 (2009).   DOI   ScienceOn
11 M. Atif, M. Nadeem, R. Grossinger, and R. Sato Turtelli, J. Alloys Compd. 509, 5720 (2011).   DOI   ScienceOn
12 A. S. Fawzi, A. D. Sheikh, and V. L. Mathe, J. Alloys Compd. 502, 231 (2010).   DOI   ScienceOn
13 J. M. Daniels and A. Rosencwaig, Can. J. Phys. 48, 381 (1970).   DOI
14 M. Jalaly, M. H. Enayati, P. Kameli, and F. Karimzadeh, Physica B 405, 507 (2010).   DOI   ScienceOn
15 Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, and G. Zou, J. Mater. Lett. 60, 3548 (2006).   DOI   ScienceOn
16 K. Maaz, S. Karim, A. Mumtaz, S. K. Hasanain, J. Liu, and J. L. Duan, J. Magn. Magn. Mater. 321, 1838 (2009).   DOI   ScienceOn
17 X. Li and G. Wang, J. Magn. Magn. Mater. 321, 1276 (2009).   DOI   ScienceOn
18 X. Li, Q. Li, Z. Xia, and W. Yan, J. Alloys Compd. 458, 558 (2008).   DOI   ScienceOn
19 H. W. Wang and S. C. Kung, J. Magn. Magn. Mater. 270, 230 (2004).   DOI   ScienceOn
20 V. K. Sankaranarayanan and C. Sreekumar, Curr. Appl. Phys. 3, 205 (2003).   DOI   ScienceOn
21 A. Kumar, M. C. Varma, C. L. Dube, K. H. Rao, and S. C. Kashyap, J. Magn. Magn. Mater. 320, e370 (2008).   DOI   ScienceOn
22 H. E. Zhang, B. F. Zhang, G. F. Wang, X. H. Dong, and Y. Gao, J. Magn. Magn. Mater. 312, 126 (2007).   DOI   ScienceOn
23 S. Yan, J. Geng, L. Yin, and E. Zhou, J. Magn. Magn. Mater. 277, 84 (2004).   DOI   ScienceOn
24 S. Zahi, M. Hashim, and A. R. Daud, J. Magn. Magn. Mater. 308, 177 (2007).   DOI   ScienceOn
25 A. Verma, T. C. Goel, R. G. Mendiratta, and P. Kishan, J. Magn. Magn. Mater. 208, 13 (2000).   DOI   ScienceOn
26 A. Verma, O. P. Thakur, C. Prakash, T. C. Goel, and R. G. Mendiratta, Mater. Sci. Eng. B 116, 1 (2005).   DOI   ScienceOn
27 S. Thakar, S. C. Katyal, and M. Singh, J. Magn. Magn. Mater. 321, 1 (2009).   DOI   ScienceOn
28 R. D. Shannon and C. T. Prewitt, Acta Cryst. B 26, 1046 (1970).   DOI
29 I. H. Gul, W. Ahmwd, and A. Maqsood, J. Magn. Magn. Mater. 320, 270 (2008).   DOI   ScienceOn
30 A. Navrotsky and O. J. Kleppa, J. Inorg. Nucl. Chem. 30, 479 (1968).   DOI   ScienceOn
31 R. F. Strickland Constable, Kinetics and Mechanism of Crystallization, Academic, New York (1968).
32 C. Upadhyay and H. C. Verma, J. Appl. Phys. 95, 5751 (2004).
33 J. Smit, F. K. Lotgering, and R. P. Van Stapele, J. Phys. Soc. Japan Suppl. 17, 268 (1962).
34 M. De Marco, X. W. Wang, R. L. Snyder, J. Simmins, S. Bayya, and M. White, J. Appl. Phys. 73, 6287 (1993).   DOI   ScienceOn
35 D. E. Nagle, H. Frauenfelder, R. D. Taylor, D. R. F. Cochran, and B. T. Matthias, Phys. Rev. Lett. 5, 364 (1960).   DOI
36 R. E. Watson and A. J. Freeman, Phys. Rev. 123, 2027 (1961).   DOI
37 S. Geller, H. J. Williams, R. C. Sherwood, and G. P. Espinosa, J. Phys. Chem. Solids 23, 1525 (1962).   DOI   ScienceOn
38 P. G. Bercoff and H. R. Bertorello, J. Magn. Magn. Mater. 213, 56 (2000).   DOI   ScienceOn
39 G. F. Dionne, J. Appl. Phys. 41, 4874 (1970).   DOI
40 S. I. Youssef, M. G. Natera, R. J. Begum, B. S. Srinivasan, and N. S. Satya Murthy, J. Phys. Chem. Solids 30, 1941 (1969).   DOI   ScienceOn
41 R. Ingalls, Phys. Rev. 133, A787 (1964).   DOI
42 C. M. Yagnik and H. B. Mathur, Mol. Phys. 16, 625 (1969).   DOI   ScienceOn