• Title/Summary/Keyword: X-ray measurement

Search Result 1,305, Processing Time 0.029 seconds

Application of an Energy Sensitive CZT Detector to a DXA Type of Bone Densitometer

  • Yoon, Je-Woong;Lee, Hyung-Koo;Lee, Heung-Kyu
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.422-424
    • /
    • 2002
  • The accuracy of DXA(Dual Energy X-ray Absorptiometry) highly depends on the detection and separation capability of dual energy X-ray X-ray photons. In addition both of scan time and patient exposure are affected by detection efficiency. A CZT detector with a good energy resolution and high detection efficiency was evaluated for the application of bone densitometry. Its performance was compared to a photomultiplier tube with a NaI(T1) scintillator in terms of energy resolution, detection efficiency and the accuracy of bone mineral density measurement. The comparison study was performed with CZT detector and PM tube using DXA equipments(OSTEO Plus, OSTEO Prima, ISOL Technology). The energy spectrum was acquired using MCA(Multi-Channel Analyzer). The used X-ray energy ranged from 20keV to 86keV. The MCA result of the CZT detector showed a slightly sharper energy spectrum than that of NaI(T1). Detection efficiency of the CZT detector at 59.5keV was 1.4 times better. Remarkably the final results of bone mineral density measurements demonstrate only less than 1% difference. The CZT detector appears to have many benefits for the application of bone densitometry. Its excellent energy resolution can enhance the counting accuracy of dual energy X-ray spectrum. Furthermore its compactness in physical dimension and no cooling requirement will be additional benefits for a more compact and accurate bone densitometer.

  • PDF

Effects of the Geometrical Misalignment on the MTF Measurement (변조전달함수 측정에 있어 기하학적 조정 불량이 해상도에 미치는 영향)

  • Kim, Jun-Woo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.705-713
    • /
    • 2021
  • The modulation transfer function (MTF) is calculated to analyze the resolution of the spatial frequency of the image acquired from the x-ray imaging system. In general, the response function of the detector acquires a line spread function (LSF) using a slit-camera, and derives a modulation transfer function through a Fourier transform. Because of the fact that the x-ray must always be incident on the center of the slit-camera, the tilt of the detector and slit-camera caused by the experimenter will affect the detector performance. In addition, if the tilt increases, the performance evaluation of the x-ray image system will be problematic. In this study, we analyzed the experimental and analytical models in the modulation transfer function, ie, the Fourier domain, based on the experimental error and analyzed the effect on the spatial frequency. Furthermore, performance evaluation is being carried out for various x-ray imaging systems, and experimental errors are indispensable, and the extent to which they can be tolerated should be reviewed.

Analysis of Radiation Exposure Dose according to Location Change during Radiation Irradiation

  • Chang-Ho Cho;Jeong-Lae Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.368-374
    • /
    • 2024
  • During an X-ray examination, the beam of radiation is dispersed in many directions. We believe that managing radiation dose is about providing transparency to users and patients in the accurate investigation and analysis of radiation dose. The purpose of measuring the radiation dose as a function of location is to ensure that medical personnel using the equipment or participating in the operating room are minimally harmed by the different radiation doses depending on their location. Four mobile diagnostic X-ray units were used to analyze the radiation dose depending on the spatial location. The image intensifier and the flat panel detector type that receives the image analyzed the dose by angle to measure the distribution of the exposure dose by location. The radiation equipment used was composed of four units, and measuring devices were installed according to the location. The X-ray (C-arm) was measured by varying the position from 0 to 360 degrees, and the highest dose was measured at the center position based on the abdominal position, and the highest dose was measured at the 90° position for the head position when using the image intensifier equipment. The operator or medical staff can see that the radiation dose varies depending on the position of the diagnostic radiation generator. In the image intensifier and flat panel detector type that accepts images, the dose by angle was analyzed for the distribution of exposed dose by position, and the measurement method should be changed according to the provision of dose information that is different from the dose output from the equipment according to the position.

Relative ratio about dose value of thermoluminescence and optical stimulated luminescence dosimeter according to exposed condition in diagnostic radiation (진단방사선의 노출 조건에 따른 열형광선량계와 광자극형광 선량계의 선량값 상대비)

  • Kang, Yeonghan;Kwon, Soonmu;Kim, BooSoon
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.499-505
    • /
    • 2012
  • The purpose of this study was to find out the difference of radiation dose value through energy, exposure number, fluoroscopy time, the number of days of exposed scatter X-ray when TLD and OSLD is used in diagnostic radiology. The difference of value were measured by relative ratio and interval. Energy makes high relative ratio of TLD($1.81{\pm}0.41$) than OSLD($1.40{\pm}0.26$), exposure number makes high of OSLD($1.40{\pm}0.26$) than TLD($2.10{\pm}0.10$). There are no significant differences between relative ratio of TLD and OSLD in fluoroscopy time and the number of days of exposed scatter X-ray. But interval of relative ratio in the number of days of exposed scatter X-ray was narrowed in less 0.2. That means, the measurement of scatter X-ray could more confident in TLD and OSLD than the measurement of direct ray. In conclusion, we have to recognize the relative ratio of TLD and OSLD could be vary depending on exposed condition of radiation. And in some cases, double test of TLD and OSLD get more creditable results of dose value.

Interfacial Natures and Controlling Morphology of Co Oxide Nanocrystal Structures by Adding Spectator Ni Ions

  • Gwag, Jin-Seog;Sohn, Young-Ku
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.505-510
    • /
    • 2012
  • Cobalt oxide nanostructure materials have been prepared by adding several concentrations of spectator Ni ions in solution, and analyzed by electron microscopy, X-day diffraction, calorimetry/thermogravimetric analysis, UV-vis absorption, Raman, and X-ray photoelectron spectroscopy. The electron microscopy results show that the morphology of the nanostructures is dramatically altered by changing the concentration of spectator ions. The bulk XRD patterns of $350^{\circ}C$-annealed samples indicate that the structure of the cobalt oxide is all of cubic Fd-3m $Co_3O_4$, and show that the major XRD peaks shift slightly with the concentration of Ni ions. In Raman spectroscopy, we can confirm the XRD data through a more obvious change in peak position, broadness, and intensity. For the un-sputtered samples in the XPS measurement process, the XPS peaks of Co 2p and O 1s for the samples prepared without Ni ions exhibit higher binding energies than those for the sample prepared with Ni ions. Upon $Ar^+$ ion sputtering, we found $Co_3O_4$ reduces to CoO, on the basis of XPS data. Our study could be further applied to controlling morphology and surface oxidation state.

Fabrication and performance evaluation of one-dimensional fiber-optic radiation sensor for X-ray profile irradiated by clinical linear accelerator (의료용 선형가속기의 X-선 분포도 측정을 위한 1차원 광섬유 방사선 센서의 제작 및 성능평가)

  • Cho, Dong-Hyun;Jang, Kyoung-Won;Yoo, Wook-Jae;Lee, Bong-Soo;Cho, Hyo-Sung;Kim, Sin
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2007
  • In this study, one-dimensional fiber-optic radiation sensor with an organic scintillator tip is fabricated to measure high energy X-ray beam profile of CLINAC. According to the energy and field size of X-ray, scintillating light signal from one-dimensional fiber-optic sensor is measured using a photodiode-amplifier system. This sensor has many advantages such as high resolution, real-time measurement and ease calibration over conventional ion chamber and film.

Fabrication and Characteristics of Mather Type Plasma Focus System (마더형 플라즈마 집속장치의 제작과 특성)

  • 김동환;이상수;조성국;김규욱;이민희
    • Korean Journal of Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.65-72
    • /
    • 1990
  • Mather type plasma focus system is designed and fabricated, and its electrical behaviors and the ,~haracteristics of the plasma are investigated. The discharge CUlTent is measured with a Rogowski coil, and the external resistance and inductance of the system are found to be $20m\Omega, 0.2{\mu}H respectively from the measured voltage signals and current signals, and discharge inductance, magnetic, and mechanical energy are calculated. 'i'he speed of the plasma current sheath in the acceleration phase is found to vary as $P^{-0.25}\timesV^{0.38}$ and its value is about is 106 cm/sec. The electron temperature in the plasma is determined from the measurement of the X-ray transmittance with the number of X-ray filters and its value is found to be about I keY. The size of plasma, measured using X-ray pin-hole camera, is about 17 (dia.) x 30 (length)mm2. h)mm2.

  • PDF

Soft Plasma Flash X-ray Generator Utilizing a Vacuum Discharge Capillary

  • Sato, Eiichi;Hayasi, Yasuomi;Usuki, Tatsumi;Sato, Koetsu;Takayama, Kazuyoshi;Ido, Hideaki
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.400-403
    • /
    • 2002
  • The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments were primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -10.8 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 ${\mu}$m aluminum filter were less than 30 ${\mu}$s, and we detected the aluminum characteristic x-ray intensity using a 6.8 ${\mu}$m aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted and diffused greatly after passing through two slits.

  • PDF

A Measurement of Kerma and Absorbed Dose in Photon Fields (Photon Beam에 대한 Kerma와 흡수선량의 측정)

  • Kim, Sung-Hee;Shin, Seung-Aea;Chu, Sung-Sil
    • Journal of Radiation Protection and Research
    • /
    • v.11 no.1
    • /
    • pp.77-82
    • /
    • 1986
  • Determination of the relation between the kerma(Kinetic Energy Released in Material) and the absorbed dose is one of the basic problems of dosimetry. Kerma and absorbed dose were measured for 6 MV X-ray from the high energy medical linear accelerator and $^{60}Co$ gamma-ray. The experimental results show that the absorbed dose in the transient equilibrium region practically coincide with the kerma in water and Al for $^{60}Co$. The maximum dose depths were $1.45g/cm^2$ for 6MV X-ray and $0.48g/cm^2\;for\;^{60}Co$ gamma-ray. The ratios of the absorbed dose at maximum build-up to the collision kerma at the surface, ($K^{att}$), were 0.949 for 6MV X-ray and 0.992 for $^{60}Co$ gamma-ray. No difference was found between water and Al when the standard field size was used. This results show that the dependence of $K^{att}$ on the material is very small.

  • PDF

Measurement of Apron Shielding Rate for X-ray and Gamma-ray (X선 및 감마선에 대한 apron의 차폐율 측정)

  • Park, Myeong-Hwan;Kwon, Deok-Moon
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.245-250
    • /
    • 2007
  • This research measured the shielding rates of apron 0.25 and 0.5 mmPb for X-ray energy in diagnosis radiation system and gamma-ray energy of $^{99m}Tc$-MDP and $^{18}F$-FDG. X-ray energies were measured on effective energy of $26.2{\sim}45.6\;keV$ when additional filtering plate of 0, 2 mmAl is used within the range of tube voltage $40{\sim}120\;kVp$, and at this time, apron 0.5 mmPb has shown about 5.5% of increase in its shielding rate over 0.25 mmPb at the highest quality. Besides, the aprons of the two types have shown high shielding rate of over 90% for direct X-ray and spatial dose rate. And, in case 0.25 and 0.5 mmPb aprons were used at 140keV of $^{99m}Tc$-MDP, the shielding effects were between 30 and 53%, and at high energy of 511 keV, $^{18}F$-FDG, the shielding effects of apron, $1.3{\sim}3.6%$, were very small.

  • PDF