• Title/Summary/Keyword: X-ray energy spectrum

Search Result 218, Processing Time 0.023 seconds

Energy Spectrum Measurement of High Power and High Energy (6 and 9 MeV) Pulsed X-ray Source for Industrial Use

  • Takagi, Hiroyuki;Murata, Isao
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.93-99
    • /
    • 2016
  • Background: Industrial X-ray CT system is normally applied to non-destructive testing (NDT) for industrial product made from metal. Furthermore there are some special CT systems, which have an ability to inspect nuclear fuel assemblies or rocket motors, using high power and high energy (more than 6 MeV) pulsed X-ray source. In these case, pulsed X-ray are produced by the electron linear accelerator, and a huge number of photons with a wide energy spectrum are produced within a very short period. Consequently, it is difficult to measure the X-ray energy spectrum for such accelerator-based X-ray sources using simple spectrometry. Due to this difficulty, unexpected images and artifacts which lead to incorrect density information and dimensions of specimens cannot be avoided in CT images. For getting highly precise CT images, it is important to know the precise energy spectrum of emitted X-rays. Materials and Methods: In order to realize it we investigated a new approach utilizing the Bayesian estimation method combined with an attenuation curve measurement using step shaped attenuation material. This method was validated by precise measurement of energy spectrum from a 1 MeV electron accelerator. In this study, to extend the applicable X-ray energy range we tried to measure energy spectra of X-ray sources from 6 and 9 MeV linear accelerators by using the recently developed method. Results and Discussion: In this study, an attenuation curves are measured by using a step-shaped attenuation materials of aluminum and steel individually, and the each X-ray spectrum is reconstructed from the measured attenuation curve by the spectrum type Bayesian estimation method. Conclusion: The obtained result shows good agreement with simulated spectra, and the presently developed technique is adaptable for high energy X-ray source more than 6 MeV.

A New Approach on the Correction for Compton Escape Component in X-Ray Unfolding Algorithm

  • Kim, Soon-Young;Kim, Jong-Kyung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.925-930
    • /
    • 1995
  • A new approach on the correction for Compton escape component in X-ray unfolding algorithm was investigated to obtain more accurate X-ray source spectrum. The X-ray detector used in this study was a planar type HPGe detector(EG&G ORTEC, GLP-32340/13-P-LP) whose energy response has been blown and ISO narrow beam series were employed as source spectrum. At lower energy Part of measured X-ray spectrum including the correction for Compton escape component more accurate unfolded spectrum was obtained by letting down the starting energy level of the collection in existing spectrum correction procedure to consider multiple scattering effects. It is, from this study, concluded that accurate correction for Compton escape component is needed in X-ray unfolding procedure since Compton scattering becomes more important as incident X-ray energies increase.

  • PDF

Image Quality Improvement through Energy Spectrum Change for X-ray (엑스선 에너지스펙트럼 변경을 통한 영상 화질 향상에 관한 연구)

  • Kim, Gu;Kim, Neung Gyun;Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.71-78
    • /
    • 2021
  • When continuous X-ray are used when acquiring and X-ray image, even the same material may not be accurately represented in the image according to the thickness due to various X-ray energies. To solve this problem, the X-ray energy spectrum was changed to improve the image quality. Using SPEKTR v3.0, an X-ray energy spectrum with an additional filter added and a general X-ray energy spectrum using only a unique filter were obtained. Simulation was performed using the obtained X-ray energy spectrum as a radiation source for Geant4 Application for Tomographic Emission (GATE). Using GATE data, an X-ray image with an additional filter and an image reconstructed from and X-ray image without an additional filter were compared and analyzed through a mono energy image of 74 keV. In the case of using the X-ray energy spectrum without using an additional filter, the amount of X-rays transmitted according to the thickness of the same material is different from the amount that decreases according to the thickness of the material. Similar results were obtained as the amount decreased with the material thickness. In other words, a similar result was obtained when the reduced dose was used with a mono energy. When an X-ray image is obtained by changing an X-ray energy spectrum using an additional filter, a more accurate result of transmission of X-rays may be obtained. In radiological examination, it was confirmed that the appropriate use of the additional filter has a great effect on improving the image quality.

X-Ray Spectrum Modulation for Mammography (X-선 스펙트럼 변조 기술 연구)

  • Kim, Gwang-Hyeon;Kim, Gyeong-Rak;O, Chang-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.600-603
    • /
    • 2003
  • Energy spectrum modulation of X-ray source in digital mammography has been studied. In this study, we calculated various filtered spectra using the scattering data. Primary spectra were generated by Molybdenum (Mo) and Tungsten (W) targets. The materials of added filters are Molybdenum and Rhodium (Rh) for 40 kVp Mo. primary spectrum, the amounts of photons over whole energy ranges are attenuated to 0.43 with 0.03 mm Mo filter and 0.38 with 0.06 mm Mo filter while the photons of energy ranged from 17 keV to 20 keV. The photons of low energy ranged below 17 keV are considerably attenuated. This effect brings out reducing the scattered radiation and dose to the patient, and enhancing subject contrast in the image. The results show that filtered spectra are not seriously affected by X-ray tube loadability. Because the energy range from 17 keV to 20 keV is directly transmitted although low and high energies are mainly filtered.

  • PDF

Development of Dual Energy Radiation Detector (이중 에너지 방사선 검출기 개발)

  • Yeo, Hwa-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.3
    • /
    • pp.5-11
    • /
    • 2010
  • In this paper, we are suggested development of dual-mode detector for dual-energy digital radiography. Design of dual-energy radiography module for commercial BIS (Baggage Inspection System) is used in the spectrum of the X-ray generator and detector for dual-mode features and radiological characteristics were analyzed. BIS suggestl on the image detector module being used to target X-ray tube to simulate X-ray spectrum and simulated spectrum to offer through the new radiographic characteristics of the detector modules were investigated. Using X-ray experiments with an increase in the thickness of the copper filter low energy detector (LED) and high-energy detector (HED) as the difference between the output signal increases. HED, especially in the size of the output signal decreases with increasing thickness of the copper filter was found.

Development of a neural network method for measuring the energy spectrum of a pulsed electron beam, based on Bremsstrahlung X-Ray

  • Sohrabi, Mohsen;Ayoobian, Navid;Shirani, Babak
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.266-272
    • /
    • 2021
  • In the pulsed electron beam generators, such as plasma focus devices and linear induction accelerators whose electron pulse width is in the range of nanosecond and less, as well as in cases where there is no direct access to electron beam, like runaway electrons in Tokamaks, measurement of the electron energy spectrum is a technical challenge. In such cases, the indirect measurement of the electron spectrum by using the bremsstrahlung radiation spectrum associated with it, is an appropriate solution. The problem with this method is that the matrix equation between the two spectrums is an ill-conditioned equation, which results in errors of the measured X-ray spectrum to be propagated with a large coefficient in the estimated electron spectrum. In this study, a method based on the neural network and the MCNP code is presented and evaluated to recover the electron spectrum from the X-ray generated by collision of the electron beam with a target. Multilayer perceptron network showed good accuracy in electron spectrum recovery, so that for the X-ray spectrum with errors of 3% and 10%, the network estimated the electron spectrum with an average standard error of 8% and 11%, on all of the energy intervals.

Estimated spectrum of a 6MV X-ray (Laplace transform 방법에 의한 x-ray의 에너지 스펙트럼 추정)

  • Yoo, Myung-Jin
    • Progress in Medical Physics
    • /
    • v.4 no.2
    • /
    • pp.37-47
    • /
    • 1993
  • The quality of radiation for a high energy x-ray beam can be specified by its attenuation curve in a selected material. The inverse Laplace transform of the attenuation curve can be used as an approximate indication of the energy spectrum of the beam. We have made a comparative investigation of the estimated spectrum obtained by the Laplace transform analysis of the transmitted exposure data measured in an absorption study of a 6MV x-ray beam. Two of existing transform pair models have been investicated and discussed.

  • PDF

Energy Spectrum Analysis between Single and Dual Energy Source X-ray Imaging for PCB Non-destructive Test (PCB 비파괴 검사에 있어서 단일 에너지 소스와 이중 에너지 소스의 영상비교를 위한 엑스선 스펙트럼 분석)

  • Kim, Myungsoo;Kim, Giyoon;Lee, Minju;Kang, Dong-uk;Lee, Daehee;Park, Kyeongjin;Kim, Yewon;Kim, Chankyu;Kim, Hyoungtaek;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.9 no.3
    • /
    • pp.153-159
    • /
    • 2015
  • Reliability of printed circuit board (PCB), which is based on high integrated circuit technology, is having been important because of development of electric and self-driving car. In order to answer these demand, automated X-ray inspection (AXI) is best solution for PCB non-destructive test. PCB is consist of plastic, copper, and, lead, which have low to high Z-number materials. By using dual energy X-ray imaging, these materials can be inspected accurately and efficiently. Dual energy X-ray imaging, that have the advantage of separating materials, however, need some solution such as energy separation method and enhancing efficiency because PCB has materials that has wide range of Z-number. In this work, we found out several things by analysis of X-ray energy spectrum. Separating between lead and combination of plastic and copper is only possible with energy range not dose. On the other hand, separating between plastic and copper is only with dose not energy range. Moreover the copper filter of high energy part of dual X-ray imaging and 50 kVp of low energy part of dual X-ray imaging is best for efficiency.

A Copper Shield for the Reduction of X-γ True Coincidence Summing in Gamma-ray Spectrometry

  • Byun, Jong-In
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.137-142
    • /
    • 2018
  • Background: Gamma-ray detectors having a thin window of a material with low atomic number can increase the true coincidence summing effects for radionuclides emitting X-rays or gamma-rays. This effect can make efficiency calibration or spectrum analysis more complicated. In this study, a Cu shield was tested as an X-ray filter to neglect the true coincidence summing effect by X-rays and gamma-rays in gamma-ray spectrometry, in order to simplify gamma-ray energy spectrum analysis. Materials and Methods: A Cu shield was designed and applied to an n-type high-purity germanium detector having an $X-{\gamma}$ summing effect during efficiency calibration. This was tested using a commercial, certified mixed gamma-ray source. The feasibility of a Cu shield was evaluated by comparing efficiency calibration results with and without the shield. Results and Discussion: In this study, the thickness of a Cu shield needed to avoid true coincidence summing effects due to $X-{\gamma}$ was tested and determined to be 1 mm, considering the detection efficiency desired for higher energy. As a result, the accuracy of the detection efficiency calibration was improved by more than 13% by reducing $X-{\gamma}$ summing. Conclusion: The $X-{\gamma}$ summing effect should be considered, along with ${\gamma}-{\gamma}$ summing, when a detection efficiency calibration is implemented and appropriate shielding material can be useful for simplifying analysis of the gamma-ray energy spectra.

NON-DESTRUCTIVE DETECTION FOR FOREIGN MATERIALS IN FOOD AND AGRICULTURAL PRODUCTS USING X-RAY SYSTEM

  • Morita, Kazuo;Tanaka, Shun'ichirou;Ogawa, Yukiharu
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.334-343
    • /
    • 1996
  • Quality evaluation for food and agricultural products have always been one of the most elusive problems associated with the handling , processing and marketing in a food plant production. In order to detect physical foreign materials in food and agricultural products, non-destructive techniques have been developed for many years. Application of X-ray system to detect physical foreign materials in food and agricultural products could be considered to be a high potential method. Especially , it is impossible to detect internal physical foreign materials by visual inspections. In this study, it was tried to be applied for two different X-ray devices. Soft X-ray system with CdTe sensor and X-ray CT scanner were evaluated for advantage of the detection of non-meltallic foreign materials in food and agricultural products . Though the soft X-ray is not a high energy radiation, it is possible to detect small different density in a material. The CdTe sensor has a high resolution for t e soft X-ray energy region. The density characteristics of foods and foreign material were expressed region. The density characteristics of foods and foreign materials were expressed as a soft X-ray energy spectrum. The energy spectrum was analyzed by a personal computer with a multi-channel analyzer. X-ray CT scanner can provide visual image and analyze by three dimensional information inside food and agricultural products. The X-ray CT scanner using as a medical equipment was used to detect a foreign material. The density characteristics of food and foreign materials in food were tried to be detected by the threshold value on the basis of the CT numbers. The soft X-ray absorption characteristics for acrylin plates and distilled water were obtained and could be found the possibility of detecting a small physical foreign materials such as a plastic wrapping film , a stone and grasshopper in food and agricultural products.

  • PDF