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In the pulsed electron beam generators, such as plasma focus devices and linear induction accelerators
whose electron pulse width is in the range of nanosecond and less, as well as in cases where there is no
direct access to electron beam, like runaway electrons in Tokamaks, measurement of the electron energy
spectrum is a technical challenge. In such cases, the indirect measurement of the electron spectrum by
using the bremsstrahlung radiation spectrum associated with it, is an appropriate solution. The problem
with this method is that the matrix equation between the two spectrums is an ill-conditioned equation,
which results in errors of the measured X-ray spectrum to be propagated with a large coefficient in the
estimated electron spectrum. In this study, a method based on the neural network and the MCNP code is
presented and evaluated to recover the electron spectrum from the X-ray generated by collision of the
electron beam with a target. Multilayer perceptron network showed good accuracy in electron spectrum
recovery, so that for the X-ray spectrum with errors of 3% and 10%, the network estimated the electron
spectrum with an average standard error of 8% and 11%, on all of the energy intervals.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The energy spectrum of electrons in devices such as plasma
focus, short pulse accelerators and Tokamaks contains valuable
technical and scientific information. Therefore, it is important to
develop measurement methods, which are compatible with re-
quirements of a specific device such as electron pulse width, energy
range, beam current and structural limitations of the device. In
cases where direct electron spectroscopy is possible, lithium drift
detectors and scintillators are used, however in high energy con-
tent and high current pulsed electron generators, direct measure-
ment of electron spectrum is difficult due to the very short duration
of electron pulse, as well as the destructive effects of collision of
intense electron beam with the detector surface [1-6].

Plasma focus devices, as high-current, short-duration pulsed
electron generators have been taken into consideration by re-
searchers in this field, due to the complexity of electron spectros-
copy in these devices [1—6].

So far, many researches have been conducted on the finding of
the electron spectrum in plasma focus devices. In some of the
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studies, the electron spectrum was measured using a magnetic
spectrometer. Kwiatkowski et al. obtained an electron energy
spectrum for the PF-1000 machine between 40 and 800 keV by a
magnetic analyzer [7].

Efforts were made by Patran et al. to construct an electron
magnetic analyzer to record the energy spectrum of electron pulses
generated by a plasma focus device [1,8,9]. This spectrometer was
successfully tested on the 3 k] plasma focus device and the energy
range of the generated electron beams was measured between 30
and 660 keV.

Stygar et al. estimated the distribution of electron energy be-
tween 20 and 500 keV by using arrays of Faraday cups and a
magnetic spectrometer. They also found that the distribution of the
electron energy was proportional to E->*%>[10]. Neog et al. used a
combination of Faraday cups and Rogowski coil to measure the
electron spectrum of a plasma focus device. The electron energy
distribution was obtained between 10 and 200 keV. The highest
intensity of electron was also evaluated in the energy range of
80—110 keV [11].

Surala et al. reported the results of experimental studies on

1738-5733/© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:b.shirani@ast.ui.ac.ir
http://crossmark.crossref.org/dialog/?doi=10.1016/j.net.2020.06.033&domain=pdf
www.sciencedirect.com/science/journal/17385733
www.elsevier.com/locate/net
https://doi.org/10.1016/j.net.2020.06.033
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.net.2020.06.033
https://doi.org/10.1016/j.net.2020.06.033

M. Sohrabi et al. / Nuclear Engineering and Technology 53 (2021) 266—272 267

pulsed electron beams of PF-360 device using two separate mag-
netic analyzers. This analyst was able to record electrons in chan-
nels with energies ranged in 41-715 keV [12].

In some of the studies, the Bremsstrahlung X-ray generated due
to collision of electron beam with a target was used as an indirect
method for measurement of electron spectrum. In plasma focus
device, collision of electrons with surface of anode is the main
mechanism of hard X-ray generation. Paassen et al. estimated the
electron spectrum of a plasma focus device by measurement of
hard X-ray emission. X-ray spectrum was measured by registration
of electron tracks in a nuclear emulsion. They found that electron
spectrum is extended up to 350 keV and the spectrum follows E~33
distribution function [13]. Johns et al. developed a numerical
formulation method to unfold the electron spectrum using hard X-
ray spectrum [14].

Shamsian et al. used a method for determination of electron
spectrum, based on the Bremsstrahlung spectrum measurement. In
the proposed method, the matrix equation was obtained between
the electron spectrum and the X-ray spectrum using the super-
position principle. The coefficients matrix of this equation was
calculated by simulating the problem by MCNP code. Considering
the error propagation while solving matrix equations in this
method, it is not possible to calculate the spectrum in more than 4
or 5 intervals with high accuracy, and this is a big problem with this
method [15].

The neural network tool is nowadays a very useful tool and is
used in many problems. Sharghi et al. used a neural network
technique to recover the Am—Be neutron spectrum measured by
the NE213 liquid scintillator detector. The result had a good con-
sistency with the FORIST code [16].

This paper presents a method for obtaining the energy spectrum
of a pulsed electron beam by the spectrum of Bremsstrahlung ra-
diation resulting from the collision of the electrons with a target
using an artificial neural network called multilayer perceptron. The
required data set for training the neural network and validating this
method was generated by Monte Carlo simulation of the electron-
target interaction. Some of the most common Monte Carlo codes
are MCNP, GEANT and FLUKA. We used the ‘4c’ version of MCNP
code for this study.

2. Methodology

2.1. Relationship between the electron spectrum and the X-ray
spectrum

A single-energy electron beam after collision with a target
produces an X-ray spectrum ranged from the energy of zero to the
energy of the electrons. Therefore, when an electron spectrum
collides with a target, an X-ray spectrum is obtained which is equal
to the sum of the spectra generated by each single energy electron.
In this study, the collision of pulsed electron beam to the surface of
a metallic target is simulated and the X-ray spectrum measured at
perpendicular direction to the direction of the electron beam is
used to estimate the electron energy spectrum.

The relationship between the electron energy spectrum and the
X-ray spectrum can be explained by the superposition principle.
The superposition principle states that for a linear system, the net
response caused by two or more stimuli is equal to the sum of the
responses that would have been caused by each stimulus individ-
ually. Therefore, if the electron spectrum is divided into n intervals
and the X-ray spectrum into m intervals, the X-ray spectrum
amplitude at each interval will be equal to the sum of the effects of
all the n individual electron intervals. In matrix statement, we have:

Xq ki1 kipo o kip Eq
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Where, X represents the spectrum of X-ray, E denotes the electron
spectrum and k;; represents the relative contribution of the i-th
electron interval to the production of X-ray in the j-th interval. The
column j of the matrix K is the X-ray spectrum that is generated by
the j-th electron interval.

2.2. Solution of the matrix equation

By having the X-ray spectrum and the coefficients matrix,
equation (1) is solved and the electron spectrum is obtained.
However, in solving this equation, due to the large condition
number of the matrix K, the error in X is propagated by a very large
factor in E, and the result will differ greatly from the true electron
spectrum.

The condition number of a transformation matrix is a measure
of output change for a small change in input. This parameter de-
termines the error generated in E as the result of the existence of a
certain value of error in X. Generally, if the condition number is k,
the error may be propagated by k time; but this does not mean the
exact amount of the error and only estimates the maximum error
value. The important point here is that this error propagation is not
related to the problem solving method, or the calculable number of
decimal digits in the code, or the rounding error, and is merely the
property of the matrix. A problem with a small condition number is
awell-conditioned problem and the problem with a large condition
number is called ill-conditioned.

Geometrically, a matrix is well-conditioned and has a condition
number close to one, when its rows in the n-dimensional space
form vectors approximately perpendicular to each other and in
another case, a matrix is ill-conditioned and has a large condition
number when its rows in n-dimensional space form approximate
parallel vectors.

Physically, the ill-conditioning occurs when the X-ray spectrum
obtained from two electron energy intervals are very close in form
and intensity. In this case, given that there is an error in the mea-
surements, it is difficult to determine which X-ray spectrum cor-
responds to which electron interval.

Different techniques may be proposed to reduce the condition
number of coefficients matrix and increase the accuracy of the
result. By decreasing the number of intervals of the electron spec-
trum, the condition numbers will also decrease. This is due to the
fact that by reducing the number of electron intervals, the differ-
ence in the mean energy of the electron intervals also increases,
and hence the difference of the X-ray spectrum of each interval will
be larger. Of course, less details will be obtained from the spectrum
by reducing the number of electron intervals. Another technique for
reduction of the condition numbers is selection of an appropriate
target material. By changing the target material, the characteristics
of X-ray spectrum completely changes, and therefore the co-
efficients matrix K is also changed and the condition number will
be different. We calculated the coefficients matrix for three target
materials of aluminum, copper and tungsten, which have low,
medium, and high atomic numbers respectively.

Some genetic algorithm-based methods and Monte Carlo
methods were also proposed for reduction of condition number
[17,18]. However in these methods the condition number of matrix
K in X = K x E equation decreases, new X and E matrixes are
generated with higher errors. Therefore, these methods do not help
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to obtain the solution with lower error.

Generally, matrix solution did not indicate good performance in
recovery of the electron spectrum. This is why alternative methods
like neural network method can be considered here. It does not
mean that the condition number of the coefficients matrix does not
affects the accuracy of results in the neural network method, but
under identical conditions, it produces more accurate results than
matrix solution method.

2.3. Artificial neural network

Artificial Neural Networks (ANN) is a data processing system
which processes data through many small processors that operate
in a parallel network to solve the problem. In these networks,
processor units are referred as neuron. After creating a network of
these neurons, this network in trained by applying a training al-
gorithm. Different types of artificial neural networks have been
introduced, mainly used in applications such as classification,
clustering, pattern recognition, modeling and approximation of
functions, control, estimation and optimization. Finding the energy
spectrum of electrons through an X-ray energy spectrum is in fact a
sort of function approximation.

2.3.1. Multi-layer perceptron network

Multi-layer perceptron is a simple neural network which cal-
culates only one output from real inputs by creating a linear com-
bination based on weights of inputs and then applies a nonlinear
transfer function on the output. Mathematical expression of this
issue is shown in equation (2).

y_¢<iwixi+b>_¢(wa+b> (2)
iz1

Where w is the vector of weights, x is the input vector, b denotes the
bias value and ¢ represents the transfer function. The transfer
function is usually selected as a sigmoid or hyperbolic tangent.
These functions are of concern due to their mathematical
simplicity, and because their behavior is linear in the vicinity of the
origin, and are saturated almost quickly when they are away from
the origin. This selection makes the multi-layer perceptron capable
of modeling both slight and severe non-linear fitting. A typical
multi-layer perceptron consists of a set of input nodes that make up
the input layer, one or more hidden layers (computing nodes), and
output layer nodes. The input signal propagates layer-by-layer into
the network. The number of hidden network layers can be selected.
In Fig. 1, for example, the signal flow of such a network with one
hidden layer is shown.

This neural network, which has one hidden layer, a nonlinear
transfer function and a linear output layer, can be described as
Equation (3).

x=f(s)=Bp(As+a) + b (3)

Where, s represents the vector of inputs, x denotes the vector of
outputs, A is the matrix of the first-layer weights and a denotes bias
vector of the first layer. B and b are weight matrix and the bias
vector of the second layer, respectively. The function ¢ represents a
nonlinear logical element. Performance of a multi-layer perceptron
network with one hidden layer, as expressed in Equation (3), is
surprisingly high. Multi-layer perceptron networks are commonly
used for supervised learning problems. This means that there is a
set of educational data in the form of input/output pairs and the
network must learn the modeling of the relationship between
them. Learning here means optimizing all weights and bias vectors

(A, B, a, and b in Eq. (3)) for the sample pairs (s(t), X(t)); so that the

sum of the square of error <Z IF(s(t)) —x(t)Hz) is minimized. This
t

is performed by applying an optimization algorithm. In practical
problems, it is necessary to select the properties of the network,
such as the number of layers and the transfer function of each layer.
It is even possible to create a separate network for each output.

2.3.2. Number of networks required

Given that the network output is the electron spectrum, the
output has been consisted of a string of numbers, and so there are
several outputs. In this case, we can create a specific network for
each output, or for each output group. The criterion for choosing
the number of networks is the connection between outputs. If the
outputs are completely independent, creating several networks
will provide a better result and if the outputs are dependent; a
shared network will provide better solution. So, given that the
outputs are dependent, we used only one network.

2.3.3. Number of hidden layers

It is optional to select one or more hidden layers for a multi-
layer perceptron network. In most cases, one hidden layer is usu-
ally sufficient, and in few cases, there is a need for two hidden
layers. There is practically no need for three and more hidden
layers. The electron spectrum and X-ray spectrum associated with
it are linearly related; so, only one hidden layer is sufficient.

2.3.4. Number of neurons of layers

As shown in Fig. 1, the number of neurons in the output layer is
equal to the number of network outputs. The number of neurons in
the hidden layer (or layers) must be optimized. The low number of
neurons causes the network’s inability to approximate the function
and the large number of neurons causes the lower accuracy of
network’s response. Although there is no general rule for deter-
mining the number of hidden layers, but approximate values for the
upper and lower limits of the number of hidden layer can be
estimated.

Each neuron aggregates all inputs with a specific weight and a
bias value, and it applies a transfer function on it. These weights
and the bias vectors are set in the training process, and are the
unknowns of the hidden layer. If the number of neurons in the
hidden layer is n; and the number of inputs is m, the number of
unknowns of this layer is (m + 1)n;. The output layer receives
outputs of the hidden layer as inputs, and therefore its neuron
number is equal to the number of network outputs. With the same
argument, the number of unknowns of the output layer is (n; + 1)n.

If there are k samples for training, there are kn equations. To
solve a problem, the number of equations must be greater than the
number of unknowns. Therefore, we can conclude the following
inequality:

(m+1)ny + (nq +1)n<kn (4)
and rewrite Equation (4) as follows.

(k—1)n

(m+n+1) ®)

n<

There is no rule in the case of lower limit of the number of
neurons but experimentally, the number 2(m + n) of the neurons is
proposed. Therefore, the limits of the number of neurons is as
follows:

(k—1)n

2(m+n)< m <m

(6)
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Input layer
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> Output signal

Fig. 1. Signal flow structure in multilayer perceptron network.

As it will be described in next sections, we used the MCNP code
to produce training samples. There is no any limitation to produce
the training samples (10* training samples were produced in this
research) and therefore the upper limit of the inequality (6) is far
from the usual number of neurons for such problems (~10). In the
case of the lower limit; it is only a starting point to find the optimal
number of neurons, and it is possible that the optimal number of
neurons is also lower than the expressed value by inequality (6). In
this research, after several trial solving of the problem we selected
the number of 10 for the neurons in the hidden layer.

2.3.5. Transfer function

Each of the hidden layers and outputs have their specific
transfer function. A list of transfer functions used in MATLAB
software is presented in Table (1).

Since we use the network for the function approximation, the
purelin function was selected as the output layer transfer function.
Transfer functions of logsig, radbas, radbasn and tansig was
selected for the hidden layer and responded well; but among these
functions, the radbas function was selected.

2.4. Training artificial neural network

If we consider the electron spectrum as a point in the n-
dimensional space as the input for network training, then this
network must be trained in all regions of space using adequate
number of training data. If the data does not include the entire
space, in regions that the network is not trained, its response is
probably false. If the number of data is low, the response will be less
accurate. To satisfy this requirement we used a large number (~10%)
of low-energy, medium-energy, and high-energy electrons along
with their own X-ray spectrum to train the network. In the training
process, we assumed Gaussian single-peak electron spectrums
(which is a common spectrum in most of pulsed electron genera-
tors) with different mean energies and different peak widths.

2.4.1. Calculation of the X-ray spectrum by the MCNP code

The X-ray spectrum resulting from the collision of any electron
spectrum with the target at the desired geometry can be calculated
using the MCNP code. MCNP is a Monte Carlo based code, which its
calculation accuracy depends on the run time. Therefore, the un-
certainty of the results can be reduced as low as required.

The geometry of X-ray generation by electron beam is simple. A

Table 1

List of widely used transfer functions available in MATLAB.
Explanation Function
Log-sigmoid transfer function logsig
Linear transfer function purelin
Radial basis transfer function radbas
Normalized radial basis transfer function radbasn
Hyperbolic tangent sigmoid transfer function tansig

source of mono-direction electrons perpendicularly hit a disk of
copper. The copper is thick enough (2 cm) to stop the highest en-
ergy electrons. The X-ray detector is placed perpendicular to the
direction of the electrons.

A common problem with the use of neural networks is the lack
of sufficient data to train the network. We used the superposition
principle along with the MCNP code to produce training data. The
transformation matrix was determined by calculating the X-ray
spectrum resulting from each electron interval, separately, and
using the fact that the j-th column of the transformation matrix is
the X-ray spectrum that is generated by the j-th electron interval.
Having the transformation matrix, by applying each assumed
electron spectrum to equation (1), the corresponding X-ray spec-
trum is obtained.

The X-ray spectrums for network training are calculated by the
MCNP code with uncertainty as low as we like. It means that if we
apply an X-ray spectrum that is produced by MCNP to the network
input, the network can recover the same electron spectrum which
generated the X-ray. The lower the uncertainty in calculating of the
X-ray spectrum, the more similar the recovered electron spectrum
to the true spectrum. It should be noted that the X-ray spectra
measured by experimental methods have relatively high mea-
surement errors and this errors propagates in the electron spec-
trum recovered by the network. Therefore, in the network
validating process, in order to provide similar conditions to real
experiments, a random error was added to each energy interval in
the X-ray spectra generated by the MCNP code to examine the
performance of the neural network in real situations.

2.4.2. Network training process

Multi-layer perceptron is commonly used for supervised
learning. This means that, as the learning algorithm is applied, the
learning process is continuously monitored and supervised.
Network training is in fact the optimization of weights and biases,
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so that the closest response to the corresponding output is ob-
tained. Thus, network training is a kind of optimization. The
network monitoring criterion is the difference between the output
of the network and the true output. The data provided to train the
network is divided into three parts which are: training data, vali-
dation data, and testing data. All the three groups of data should be
uniformly selected from entire areas of space. Otherwise, the ac-
curacy of the network response will decrease. For this purpose,
interleaved indices method were used.

Training data is known for the network and is used only for
network training. Testing data are unknown for the network and is
used at the end of the training process only for network testing.
Validation data is also unknown for the network but with the dif-
ference that it’s used in the training process and, its purpose is to
monitor the learning process. In each step, an input/output pair of
the training data is applied to train the network and weights are
adjusted. Then the outputs obtained from the network are
compared with the actual outputs. A validation data is used after a
few training and, if an increase is observed in the network error in
several consecutive validations, the learning process is stopped.

If we use enough data for training, and use the X-ray spectrums
which are calculated with low uncertainty (which is possible by
using MCNP code and running with large number of particles), the
neural network must recover the true electron spectrum. If the
network could perform that, the training process is verified.

2.4.3. Network training algorithm

There are several algorithms in MATLAB software for network
training. Given that the application is function approximation, three
algorithms are presented for network training, as shown in
Table (2).

In the function approximation, for networks including several
hundred weights and fewer, the Levenberg-Marquardt algorithm
has the fastest convergence. In many cases, this algorithm is able to
find the lowest least squared error in comparison with other al-
gorithms. With the increase in the number of weights, the advan-
tage of this algorithm decreases and it requires more memory. The
Bayesian regularization algorithm requires a lot of time, but it has a
good response to the low number of inaccurate data. Because there
is no limitation in the number of data, there is no need to use the
Bayesian regularization algorithm. The Scaled Conjugate Gradient
algorithm requires less memory. Considering that the network
training in our application does not require much memory, it is not
necessary to use the Scaled Conjugate Gradient algorithm. Finally,
given that in the double-layer network there is 10 neurons in each
layer on average, and each neuron has ten weighting factors, there
are about 200 wt in this network which should be optimized; so the
Levenberg-Marquardt algorithm was selected for network training.

3. Results and discussions
3.1. Reducing the condition number by selecting the target material
Any change in the geometry and the experimental setup, such as

the measurement angle and the target material will change the
coefficients matrix. This change necessitates the re-production of

inputs and retraining of the network for any geometry and layout.
This means that the trained network for an experimental setup or a
target material can only be used in the same setup or material.

Now, the question is that which material will result into the
lowest condition number. Here the effect of three target materials
of aluminum, copper and tungsten was studied. The condition
numbers of the coefficients matrix for aluminum, copper and
tungsten were calculated 3522, 1514, and 6345, respectively. In this
research we selected copper as target material for estimation of
electron spectrum, however it should be noted that sputtering of
the copper surface by high current electron beam is much more
serious than tungsten.

3.2. Results of the electron spectrum recovery

The X-ray spectrum resulted from collision of a pulsed electron
beam to a target, can be measured by using a differential absorption
spectrometry method with an error of less than 15% [19—21].
Therefore, in order to simulate the real conditions, a random error
must be added to the X-ray spectra that are produced by MCNP. We
evaluated the performance of the neural network for two different
error values of maximum 3% and 10%. Main sources of error in X-ray
spectra measurement are the statistical fluctuations of the number
of particles as well as inaccuracy of the outputs of X-ray detector.

A number of electron spectra were selected and their corre-
sponding X-ray spectra were calculated by MCNP code and the two
error values were applied on the X-ray spectra. The electron spec-
trum was divided into ten intervals ranging 0—600 keV. Applying
the 3% and 10% errors do not mean that all spectrum intervals have
3% or 10% of error. Rather, each interval randomly has an error in
the range of 0—10% or 0—3%. After adding errors to the X-ray
spectra, the electron spectra were recovered by the neural network
and were compared with the true electron spectra. It took about
one minute to recover each electron spectrum.

The comparison criterion for the recovered spectrum and the
true spectrum is the standard difference that is calculated by
equation (7).

(7)

Where, n is the number of electron energy intervals, C; is the weight
of i-th interval in the true spectrum, and Cj is the weight of i-th
interval in the recovered electron spectrum.

The results showed that the multi-layer perceptron network
found the spectra with a good accuracy for both error values, and
the recovered spectra have small difference with the true spectra.
This difference is less than 10% of the values of the true spectrum
for X-ray spectra whose components have the error value up to 3%.
Fig. 2 shows three samples of the spectra recovered by the neural
network with the true spectra. The standard difference between
the two spectra in Fig. 2-a, 2-b and 2-c for the X-ray spectrum with
a maximum error of 3% were 4.85%, 9.98% and 8.85% respectively
and, for the X-ray spectrum with a maximum error of 10% were
13.07%, 12.72%, and 6.13%, respectively. As a result, if the general

Table 2

Three proposed algorithms for training of multi-layer perceptron network.
Characteristics Full name of algorithm Algorithm
Require more memory, Less time-consuming Levenberg-Marquardt trainlm
Time-consuming, but accurate response to the low number of data Bayesian regularization trainbr
Less memory is required Scaled Conjugate Gradient trainscg
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Fig. 2. The electron spectrum recovered by the neural network along with the true
Gaussian spectrum (for the two maximum error values of 3% and 10% of the X-ray
spectrum). (a) A low-energy peak; (b) A moderate-energy peak; and (c) A high-energy
peak.

form of the electron spectrum is known (here, the Gaussian form),
the multi-layer perceptron network, even with an error of nearly
10% of the X-ray spectrum, is able to recover the electron spectrum
with acceptable accuracy.
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Fig. 3. The electron spectrum recovered by the neural network along with the true
spectrum for different numbers of energy intervals (a) 8 intervals (b) 10 intervals and
(c) 12 intervals.

3.3. Effect of the number of energy intervals on the accuracy of the
spectrum recovery

By increasing the number of electron intervals, the X-ray spectra
resulted from the individual electron intervals will have less dif-
ference and therefore the coefficients matrix will be more ill-
conditioned. To investigate this, the recovery process was
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performed for 8, 10 and 12 of electron intervals. As expected,
network performance gets less accurate with increasing the num-
ber of electron intervals. Fig. 3 shows examples of recovered
spectrum along with the true spectrum. The standard difference
between the true and the recovered spectra in the examples shown
in Fig. 3 for the 8, 10, and 12 intervals was calculated to be 6.49%,
9.98%, and 15.07%, respectively.

4. Conclusion

The proposed method is based on multilayer perceptron neural
network for recovery of the electron spectrum from the X-ray
spectrum resulting from collision of the electron beam with a
target. The advantage of this method is that despite the adding 10%
error to the X-ray spectrum, it recovered the true electron spectrum
with about 11% relative error. For the X-ray spectrum with a
maximum error of 3% and 10%, the multi-layer perceptron network
estimated the electron spectrum in ten energy intervals with
standard differences of 8% and 11%.

It is possible to obtain an electron spectrum in a more detailed
way (that is, with higher numbers of intervals) but with lower ac-
curacy. Finding the electron spectrum with higher accuracy is
conditional on the measurement of the X-ray spectrum with less
error.

This method can be used to recover the electron spectrum of
pulsed electron beam generators such as plasma focus devices,
induction linear accelerators as well as other devices in which there
is not direct access to the electron beam and therefore direct
electron spectroscopy is not possible, such as Tokamaks.
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