• 제목/요약/키워드: X-ray CT Analysis

검색결과 223건 처리시간 0.246초

Evaluation of Pore Size Distribution of Berea Sandstone using X-ray Computed Tomography (X-ray CT를 이용한 베레아 사암의 공극크기분포 산정)

  • Kim, Kwang Yeom;Kim, Kyeongmin
    • The Journal of Engineering Geology
    • /
    • 제24권3호
    • /
    • pp.353-362
    • /
    • 2014
  • Pore structures in porous rock play an important role in hydraulic & mechanical behaviour of rock. Porosity, size distribution and orientation of pores represent the characteristics of pore structures of porous rock. While effective porosity can be measured easily by conventional experiment, pore size distribution is hard to be quantified due to the lack of corresponding experiment. We assessed pore size distribution of Berea sandstone using X-ray CT image based analysis combined with associated images processing, i.e., image filtering, binarization and skeletonization subsequently followed by the assessment of local thickness and star chord length. The aim of this study is to propose a new and effective way to evaluate pore structures of porous rock using X-ray CT based analysis for pore size distribution.

Performance analysis of improved hybrid median filter applied to X-ray computed tomography images obtained with high-resolution photon-counting CZT detector: A pilot study

  • Lee, Youngjin
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3380-3389
    • /
    • 2022
  • We evaluated the performance of an improved hybrid median filter (IHMF) applied to X-ray computed tomography (CT) images obtained using a high-resolution photon-counting cadmium zinc telluride (CZT) detector. To study how the proposed approach improves the image quality, we measured the noise levels and the overall CT-image quality. We established a CZT imaging system with a detector length of 5.12 cm and thickness of 0.3 cm and acquired phantom images. To evaluate the efficacy of the proposed filter, we first modeled two conventional median filters. Subsequently, we were able to achieve a normalized noise power spectrum result of ~10-8 mm2, and furthermore, the proposed method improved the contrast-to-noise ratio by a factor of ~1.51 and the coefficient of variation by 1.55 relative to the counterpart values of the no-filter image. In addition, the IHMF exhibited the best performance among the three filters considered as regards the peak signal-to-noise ratio and no-reference-based image-quality evaluation parameters. Thus, our results demonstrate that the IHMF approach provides a superior image performance over conventional median filtering methods when applied to actual CZT X-ray CT images.

Empirical Determination of a CT X-ray Spectra by Numerical Analysis using Transmission Data (투과선량의 수치해석에 의한 전산화단층영상장치 X선의 에너지 분포결정)

  • 최태진;김옥배;서수지
    • Progress in Medical Physics
    • /
    • 제8권2호
    • /
    • pp.35-43
    • /
    • 1997
  • The knowledge of x-ray spectra is highly desirable in some investigation involves the differential penetrating power and absorption coefficient correction of various photon beam. The transmission data were obtained from the 80 kVp and 120 kVp of CT x-ray beam with the aluminium filter which is designed in a 30 cm of diameter and pipe-typed filter was prepared from 5.0 mm upto 92.3 mm of thickness. To obtain the reconstructed spectra of CT x-ray, the investigator used the iterative numerical analysis which has been extended to include the tungsten characteristics from experimental transmission data with energy interval of 2 keV. Comparison of the calculated transmission data from the reconstructed spectra with that of measurement shows good agreement in both 80 kVp and 120 kVp x-ray beams. This numerical analysis based on iteratively calculation of fractional exposure per energy interval shows the high potential of usefulness of determination the x-ray spectra from the attenuated beam in diagnostic energy range.

  • PDF

Experimental Study on the Recovery of Useful Minerals Using High Voltage Discharge Shock Pulse (고전압 방전 충격펄스를 이용한 유용광물 회수에 관한 실험적 연구)

  • Cho, Sangho;Jeong, Sangsun
    • Explosives and Blasting
    • /
    • 제40권1호
    • /
    • pp.17-28
    • /
    • 2022
  • Electrical pulse disintegration(ED) is known as an efficient technology for recovering valuable resources by inducing dielectric breakdown in solids to separate mineral interfaces in ores among the crushing technologies by high voltage discharge. In this study, ED crushing experiment and mechanical crushing experiment of sulfide minerals were performed, and SEM analysis and Microfocus X-Ray CT of the crushed product were performed in order to analyze the disintegration characteristics of zinc minerals exist in the sulfide minerals by the shock wave generated in the solid by high voltage discharge.

A Study on the Safety of Electromagnetic Wave of Medical Imaging System (의료영상장치의 전자파 안전에 대한 연구)

  • Seon, Jong-Ryul;Lee, Won-Jeong;Rhim, Jae-Dong
    • Proceedings of the Safety Management and Science Conference
    • /
    • 대한안전경영과학회 2010년도 추계학술대회
    • /
    • pp.103-112
    • /
    • 2010
  • This study was done to provide basic data on the safety of professionals in medical imaging system by measuring the electromagnetic waves generated in the medical imaging system being used in medical organization. The studied medical imaging systems were general X-ray system, computed tomography(CT), ultrasonographic system, magnetic resonance imaging(MRI), PET-CT and fluoroscopic system, and through these devices, electric field and magnetic field were measured and analyzed. As a result of the analysis, the measured values classified by the medical organizations were not much significant, but in the measurement by the medical imaging systems, there were high hazard elements in the sequential order of electric field PET-CT($17.7{\pm}22.9$)v/m, CT($10.3{\pm}8.7$)v/m, general X-ray system ($8.8{\pm}8.8$)v/m, magnetic field general X-ray system($5.06{\pm}8.26$)mG, CT($2.71{\pm}4.53$)mG and PET-CT($0.74{\pm}0.34$)mG, the systems that adopted X-ray as main ray source, and the more aged the medical imaging systems, the greater the effects of electro-magnetic waves($10.6{\pm}15.93v/m$ for 5 years or more, $6.14{\pm}5.60v/m$ for 5 years or less). The effects of electromagnetic waves on medical imaging systems or facilities were not much when the notification of ministry of knowledge economy is considered, but in the overall perspective considering all the equipments and facility of the medical organization, such effects were significant. It is determined that sustainable safety managements of electric field and magnetic field must be done during process from medical imaging system installation to maintenance to rule out such factors.

  • PDF

A Study on the Safety of Electromagnetic Wave of Medical Imaging System (의료영상장치의 전자파 안전에 대한 연구)

  • Seon, Jong-Ryul;Lee, Won-Jeong;Rhim, Jae-Dong
    • Journal of the Korea Safety Management & Science
    • /
    • 제12권4호
    • /
    • pp.67-72
    • /
    • 2010
  • This study was done to provide basic data on the safety of professionals in medical imaging system by measuring the electromagnetic waves generated in the medical imaging system being used in medical organization. The studied medical imaging systems were general X-ray system, computed tomography(CT), ultrasonographic(USG) system, magnetic resonance imaging(MRI), PET-CT and fluoroscopic(R/F) system, and through these devices, electric field and magnetic field were measured and analyzed. As a result of the analysis, the measured values classified by the medical organizations were not much significant, but in the measurement by the medical imaging systems, there were high hazard elements in the sequential order of electric field PET-CT($17.7{\pm}22.9$)v/m, CT($10.3{\pm}8.7$)v/m, general X-ray system($8.8{\pm}8.8$)v/m, magnetic field general X-ray system($5.06{\pm}8.26$)mG, CT($2.71{\pm}4.53$)mG and PET-CT($0.74{\pm}0.34$)mG, the systems that adopted X-ray as main ray source, and the more aged the medical imaging systems, the greater the effects of electro-magnetic waves($10.6{\pm}15.93v/m$ for 5 years or more, $6.14{\pm}5.60v/m$ for 5 years or less). The effects of electromagnetic waves on medical imaging systems or facilities were not much when the notification of ministry of knowledge economy is considered, but in the overall perspective considering all the equipments and facility of the medical organization, such effects were significant. It is determined that sustainable safety managements of electric field and magnetic field must be done during process from medical imaging system installation to maintenance to rule out such factors.

Current Status of X-ray CT Based Non Destructive Characterization of Bentonite as an Engineered Barrier Material (공학적방벽재로서 벤토나이트 거동의 X선 단층촬영 기반 비파괴 특성화 현황)

  • Diaz, Melvin B.;Kim, Joo Yeon;Kim, Kwang Yeom;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • 제31권6호
    • /
    • pp.400-414
    • /
    • 2021
  • Under high-level radioactive waste repository conditions, bentonite as an engineered barrier material undergoes thermal, hydrological, mechanical, and chemical processes. We report the applications of X-ray Computed Tomography (CT) imaging technique on the characterization and analysis of bentonite over the past decade to provide a reference of the utilization of this technique and the recent research trends. This overview of the X-ray CT technique applications includes the characterization of the bentonite either in pellets or powder form. X-ray imaging has provided a means to extract grain information at the microscale and identify crack networks responsible for the pellets' heterogeneity. Regarding samples of pellets-powder mixtures under hydration, X-ray CT allowed the identification and monitoring of heterogeneous zones throughout the test. Some results showed how zones with pellets only swell faster compared to others composed of pellets and powder. Moreover, the behavior of fissures between grains and bentonite matrix was observed to change under drying and hydrating conditions, tending to close during the former and open during the latter. The development of specializing software has allowed obtaining strain fields from a sequence of images. In more recent works, X-ray CT technique has served to estimate the dry density, water content, and particle displacement at different testing times. Also, when temperature was added to the hydration process of a sample, CT technology offered a way to observe localized and global density changes over time.

Analysis of Correlation between Flexural Strength and Pore Characteristics on CFRP Rebar as Fabrication Method (탄소보강근의 제조 조건에 따른 휨강도와 기공 특성과의 상관성 분석)

  • Kim, Nam-Il;Kwon, Do-Young;Chu, Yong-Sik
    • Composites Research
    • /
    • 제35권5호
    • /
    • pp.328-333
    • /
    • 2022
  • In this study, the fabrication conditions of CFRP rebar were controlled to derive the correlation between flexural strength and pore characteristics. The fabrication conditions of CFRP rebar were adjusted for presence or absence of rib, resin temperature, and curing furnace temperature. Flexural strength and pore characteristics of fabricated CFRP rebar were analyzed. The flexural strength of CFRP rebar was changed depending on the fabrication condition, such as the presence or absence of rib, the resin temperature, and the curing furnace temperature. It was confirmed that the flexural strength of CFRP rebar was significantly lowered when the rib was not wound. As a result of Nano X-ray CT analysis, the max. pore diameter was shown in CFRP rebar prepared at a resin temperature of 60℃. According to optical microscopic analysis, the maximum porosity was 6.89% in No. 1, and the minimum porosity was 2.88% in No. 7. The correlation coefficient between porosity used optical microscopy and flexural strength was -0.64, which was higher than the correlation coefficient between porosity or pore size used Nano X-ray CT and flexural strength.

Physio-mechanical and X-ray CT characterization of bentonite as sealing material in geological radioactive waste disposal

  • Melvin B. Diaz;Sang Seob Kim;Gyung Won Lee;Kwang Yeom Kim;Changsoo Lee;Jin-Seop Kim;Minseop Kim
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.449-459
    • /
    • 2023
  • The design and development of underground nuclear waste repositories should cover the performance evaluation of the different components such as the construction materials because the long term stability will depend on their response to the surrounding conditions. In South Korea, Gyeonju bentonite has been proposed as a candidate to be used as buffer and backfilling material, especially in the form of blocks to speed up the construction process. In this study, various cylindrical samples were prepared with different dry density and water content, and their physical and mechanical properties were analyzed and correlated with X-ray CT observations. The main objective was to characterize the samples and establish correlations for non-destructive estimation of physical and mechanical properties through the utilization of X-ray CT images. The results showed that the Uniaxial Compression Strength and the P-wave velocity have an increasing relationship with the dry density. Also, a higher water content increased the values of the measure parameters, especially for the P-wave velocity. The X-ray CT analysis indicated a clear relation between the mean CT value and the dry density, Uniaxial Compression Strength, and P-wave velocity. The effect of the higher water content was also captured by the mean CT value. Also, the relationship between the mean CT value and the dry density was used to plot CT dry densities using CT images only. Moreover, the histograms also provided information about the samples heterogeneity through the histograms' full width at half maximum values. Finally, the particle size and heterogeneity were also analyzed using the Madogram function. This function identified small particles in uniform samples and large particles in some samples as a result of poor mixing during preparation. Also, the μmax value correlated with the heterogeneity, and higher values represented samples with larger ranges of CT values or particle densities. These image-based tools have been shown to be useful on the non-destructive characterization of bentonite samples, and the establishment of correlations to obtain physical and mechanical parameters solely from CT images.

Analysis of Beam Hardening of Modulation Layers for Dual Energy Cone-beam CT (에너지 변조 필터로 구현한 이중 에너지 콘빔 CT의 에너지 스펙트럼 평가 연구)

  • Ahn, Sohyun;Cho, Sam Ju;Keum, Ki Chang;Choi, Sang Gyu;Lee, Rena
    • Progress in Medical Physics
    • /
    • 제27권1호
    • /
    • pp.8-13
    • /
    • 2016
  • Dual energy cone-beam CT can distinguish two materials with different atomic compositions. The principle of dual energy cone-beam CT based on modulation layer is that higher energy spectrum can be acquired at blocked x-ray window. To evaluate the possibility of modulation layer based dual energy cone-beam CT, we analyzed x-ray spectrum for various thicknesses of modulation layers by Monte Carlo simulation. To compare with the results of simulation, the experiment was performed on prototype cone-beam CT for 50~100 kVp with CdTe XR-100T detector. As the result of comparing, the mean energy of energy spectrum for 80 kVp are well matched with that of simulation. The mean energy of energy spectrum for 80 and 120 kVp were increased as 1.67 and 1.52 times by 2.0 mm modulation layer, respectively. We realized that the virtual dual energy x-ray source can be generated by modulation layer.