• Title/Summary/Keyword: X-ray 시스템

Search Result 499, Processing Time 0.027 seconds

Quantum Chemical Calculations of the Effect of Si-O Bond Length on X-ray Raman Scattering Features for MgSiO3 Perovskite (양자화학계산을 이용한 Si-O 결합길이가 MgSiO3 페로브스카이트의 X-선 Raman 산란 스펙트럼에 미치는 영향에 대한 연구)

  • Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • Probing the electronic structures of crystalline Mg-silicates at high pressure is essential for understanding the various macroscopic properties of mantle materials in Earth's interior. Quantum chemical calculations based on the density functional theory are used to explore the atomic configuration and electronic structures of Earth materials at high pressure. Here, we calculate the partial density of states (PDOS) and O K-edge energy-loss near-edge structure (ELNES) spectra for $MgSiO_3$ perovskite at 25 GPa and 120 GPa using the WIEN2k program based on the full-potential linearized projected augmented wave (FP-LPAW) method. The calculated PDOS and O K-edge ELNES spectra for $MgSiO_3$ Pv show significant pressure-induced changes in their characteristic spectral features and relative peak intensity. These changes in spectral features of $MgSiO_3$ Pv indicate that the pressure-induced changes in local atomic configuration around O atoms such as Si-O, O-O, and Mg-O length can induce the significant changes on the local electronic structures around O atoms. The result also indicates that the significant changes in O K-edge features can results from the topological densification at constant Si coordination number. This study can provide a unique opportunity to understand the atomistic origins of pressure-induced changes in local electronic structures of crystalline and amorphous $MgSiO_3$ at high pressure more systematically.

Evaluation on the Accuracy of the PPS in the Proton Therapy System, Which Uses the Self Made QA Phantom (자체 제작한 QA Phantom을 이용한 양성자 PPS (Patient Positioning System)의 정확성 평가)

  • Lee, Ji-Eun;Kim, Jae-Won;Kang, Dong-Yoon;Choi, Jae-Hyeok;Yeom, Du-Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.115-121
    • /
    • 2012
  • Purpose: The process of the proton treatment is done by comparing the DRR and DIPS anatomic structure to find the correction factor and use the PPS to use this factor in the treatment. For the accuracy of the patient set up, the PPS uses a 6 axis system to move. Therefore, there needs to be an evaluation for the accuracy between the PPS moving materialization and DIPS correction factor. In order to do this, we will use a self made PPS QA Phantom to measure the accuracy of the PPS. Materials and Methods: We set up a PPS QA Phantom at the center to which a lead marker is attached, which will act instead of the patient anatomic structure. We will use random values to create the 6 axis motions and move the PPS QA Phantom. Then we attain a DIPS image and compare with the DRR image in order to evaluate the accuracy of the correction factor. Results: The average correction factor, after moving the PPS QA Phantom's X, Y, Z axis coordinates together from 1~5 cm, 1 cm at a time, and coming back to the center, are 0.04 cm, 0.026 cm, 0.022 cm, $0.22^{\circ}$, $0.24^{\circ}$, $0^{\circ}$ on the PPS 6 axis. The average correction rate when moving the 6way movement coordinates all from 1 to 2 were 0.06 cm, 0.01 cm, 0.02 cm, $0.1^{\circ}$, $0.3^{\circ}$, $0^{\circ}$ when moved 1 and 0.02 cm, 0.04 cm, 0.01 cm, $0.3^{\circ}$, $0.5^{\circ}$, $0^{\circ}$ when moved 2. Conclusion: After evaluating the correction rates when they come back to the center, we could tell that the Lateral, Longitudinal, Vertical were all in the acceptable scope of 0.5 cm and Rotation, Pitch, Roll were all in the acceptable scope of $1^{\circ}$. Still, for a more accurate proton therapy treatment, we must try to further enhance the image of the DIPS matching system, and exercise regular QA on the equipment to reduce the current rate of mechanical errors.

  • PDF

Potential Contamination Sources on Fresh Produce Associated with Food Safety

  • Choi, Jungmin;Lee, Sang In;Rackerby, Bryna;Moppert, Ian;McGorrin, Robert;Ha, Sang-Do;Park, Si Hong
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • The health benefits associated with consumption of fresh produce have been clearly demonstrated and encouraged by international nutrition and health authorities. However, since fresh produce is usually minimally processed, increased consumption of fresh fruits and vegetables has also led to a simultaneous escalation of foodborne illness cases. According to the report by the World Health Organization (WHO), 1 in 10 people suffer from foodborne diseases and 420,000 die every year globally. In comparison to other processed foods, fresh produce can be easily contaminated by various routes at different points in the supply chain from farm to fork. This review is focused on the identification and characterization of possible sources of foodborne illnesses from chemical, biological, and physical hazards and the applicable methodologies to detect potential contaminants. Agro-chemicals (pesticides, fungicides and herbicides), natural toxins (mycotoxins and plant toxins), and heavy metals (mercury and cadmium) are the main sources of chemical hazards, which can be detected by several methods including chromatography and nano-techniques based on nanostructured materials such as noble metal nanoparticles (NMPs), quantum dots (QDs) and magnetic nanoparticles or nanotube. However, the diversity of chemical structures complicates the establishment of one standard method to differentiate the variety of chemical compounds. In addition, fresh fruits and vegetables contain high nutrient contents and moisture, which promote the growth of unwanted microorganisms including bacterial pathogens (Salmonella, E. coli O157: H7, Shigella, Listeria monocytogenes, and Bacillus cereus) and non-bacterial pathogens (norovirus and parasites). In order to detect specific pathogens in fresh produce, methods based on molecular biology such as PCR and immunology are commonly used. Finally, physical hazards including contamination by glass, metal, and gravel in food can cause serious injuries to customers. In order to decrease physical hazards, vision systems such as X-ray inspection have been adopted to detect physical contaminants in food, while exceptional handling skills by food production employees are required to prevent additional contamination.

A Study to Evaluate the Efficacy of CBCT and EXACTRAC on Spine Stereotactic Body Radiation Therapy (CBCT와 EXACTRAC을 이용한 Spine SBRT의 유용성 평가)

  • Choi, Woo Keun;Park, Su Yeon;Park, Do Keun;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.167-173
    • /
    • 2013
  • Purpose: This study is to evaluate the efficacy of the CBCT and EXACTRAC the image on the spine stereotactic body radiation treatment. Materials and Methods: The study compared the accuracy of the dose distribution for changes in the real QA phantom for The shape of the body of the phantom was performed. Novalis treatment artificially set up at the center and to the right, on the Plan 1 mm, 2 mm, 3 mm in front 1 mm, 2 mm, 3 mm and upwards 1 mm, 2 mm, 3 mm and $0.5^{\circ}$ by moving side to side Exactrac error correction and error values of CBCT and plan changes on the dose distribution were recorded and analyzed. Results: Cubic Phantom of the experimental error, the error correction Exactrac X-ray 6D Translation in the direction of the 0.18 mm, Rotation direction was $0.07^{\circ}$. Translation in the direction of the 3D CBCT 0.15 mm Rotation direction was $0.04^{\circ}$. DVH dose distribution using the results of the AP evaluate the change in the direction of change was greatest when moving. Conclusion: ExacTrac image-guided radiation therapy with a common easy and fast to get pictures from all angles, from the advantage of CBCT showed a potential alternative. But every accurate information compared with CT treatment planning and treatment of patients with more accurate than the CBCT ExacTrac the location provided. Changes in the dose distribution in the experiment results show that the treatment of spinal SBRT set up some image correction due to errors at the target and enter the spinal cord dose showed that significant differences appear.

  • PDF

Corrosion Characteristics by CCPP Control in Simulated Distribution System (CCPP 조절에 따른 모의 상수관로의 부식특성에 관한 연구)

  • Kim, Do-Hwan;Lee, Jae-In;Lee, Ji-Hyung;Han, Dong-Yueb;Kim, Dong-Youn;Hong, Soon-Heon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1249-1256
    • /
    • 2005
  • This study was performed to investigate the efficiency of the corrosion prevention in the simulated distribution system using CCPP(Calcium Carbonate Precipitation Potential) as the anti-corrosive index by adjusting pH, total dissolved solids, alkalinity and calcium hardness in the water treatment pilot process. The materials of the simulated distribution system(SDS) were equiped with same materials of real field water distribution system. CCPP concentrations controlled by $Ca(OH)_2$, $CO_2$ gas and $Na_2CO_3$ in the simulated distribution system and uncontrolled by the chemicals in the general water distribution system were average 0.61 mg/L and -7.77 mg/L. The concentrations of heavy metals like Fe, Zn, Cu ions in effluent water of the simulated distribution system controlled with water quality were decreased rather than the general water distribution system uncontrolled with water quality. In simulated distribution system(SDS), corrosion prevention film formed by CCPP control was observed that scale was come into forming six months later and it was formed into density as time goes on. We were analyzed XRD(X-ray diffraction) for investigating component of crystal compounds and structure for galvanized steel pipe(15 mm). Finding on analysis, scale was compounded to $Zn_4CO_3(OH)_6{\cdot}H_2O$ (Zinc Carbonate Hydroxide Hydrate) after ten months late, and it was compounded on $CaCO_3$(Calcium Carbonate) and $ZnCO_3$(Smithsonite) after nineteen months later.

ATM Cell Encipherment Method using Rijndael Algorithm in Physical Layer (Rijndael 알고리즘을 이용한 물리 계층 ATM 셀 보안 기법)

  • Im Sung-Yeal;Chung Ki-Dong
    • The KIPS Transactions:PartC
    • /
    • v.13C no.1 s.104
    • /
    • pp.83-94
    • /
    • 2006
  • This paper describes ATM cell encipherment method using Rijndael Algorithm adopted as an AES(Advanced Encryption Standard) by NIST in 2001. ISO 9160 describes the requirement of physical layer data processing in encryption/decryption. For the description of ATM cell encipherment method, we implemented ATM data encipherment equipment which satisfies the requirements of ISO 9160, and verified the encipherment/decipherment processing at ATM STM-1 rate(155.52Mbps). The DES algorithm can process data in the block size of 64 bits and its key length is 64 bits, but the Rijndael algorithm can process data in the block size of 128 bits and the key length of 128, 192, or 256 bits selectively. So it is more flexible in high bit rate data processing and stronger in encription strength than DES. For tile real time encryption of high bit rate data stream. Rijndael algorithm was implemented in FPGA in this experiment. The boundary of serial UNI cell was detected by the CRC method, and in the case of user data cell the payload of 48 octets (384 bits) is converted in parallel and transferred to 3 Rijndael encipherment module in the block size of 128 bits individually. After completion of encryption, the header stored in buffer is attached to the enciphered payload and retransmitted in the format of cell. At the receiving end, the boundary of ceil is detected by the CRC method and the payload type is decided. n the payload type is the user data cell, the payload of the cell is transferred to the 3-Rijndael decryption module in the block sire of 128 bits for decryption of data. And in the case of maintenance cell, the payload is extracted without decryption processing.

Entrance Skin Dose According to Age and Body Size for Pediatric Chest Radiography (소아 흉부촬영 시 나이와 체격에 따른 입사피부선량)

  • Shin, Gwi-Soon;Min, Ki-Yeul;Kim, Doo-Han;Lee, Kwang-Jae;Park, Ji-Hwan;Lee, Gui-Won
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.327-334
    • /
    • 2010
  • Exposure during childhood results in higher risk for certain detrimental cancers than exposure during adulthood. We measured entrance skin dose (ESD) under 7-year children undergoing chest imaging and compared the relationship between ESD and age, height, weight, chest thickness. Though it is important to measure chest thickness for setting up the exposure condition of chest examination, it is difficult to measure chest thickness of children. We set up exposure parameters according to age because chest thickness of children has correlation with age. In the exposure parameters, for chest A-P examination under 2 year-children, tube voltage (kVp) in hospital A was higher than that in hospital B while tube current (mAs) was higher in hospital B, thus the ESD values were about 1.7 times higher in hospital B. However, for chest P-A examination over 4 year-children, the tube voltage was 7 kVp higher in hospital B, the tube current were same in all two systems, and focus to image receptor distance (FID) in hospital B (180 cm) was longer than that in hospital A (130 cm), thus the ESD values were 1.4 times higher in hospital A. For same ages, the ESD values for chest A-P examinations were higher than those for chest P-A examinations. Comparing ESD according to age, ESD values were $154{\mu}Gy$, $194{\mu}Gy$ and $138{\mu}Gy$ for children under 1 year, 1 to under 4 years and 4 to under 7 years of age, respectively. These values were lower than reference level ($200{\mu}Gy$) recommended in JART (japan association of radiological technologists), however these were higher than reference values recommended by EC (european commission), NRPB (national radiological protection board) and NIFDS (national institute of food & drug safety evaluation). In conclusion, the values of ESD were affected by exposure parameters from radiographer's past experience more than x-ray system. ESD values for older children were not always higher than those for younger children. Therefore we need to establish our own DRLs (diagnostic reference levels) according to age of the children in order to optimize pediatric patient protection.

Evaluation on Organ Dose and Image Quality of Lumbar Spine Radiography Using Glass Dosimeter (유리선량계를 이용한 요추검사의 장기선량 및 영상의 평가)

  • Kim, Jae-Kyeom;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • The purpose of this study was to provide resources for medical exposure reduction through evaluation of organ dose and image resolution for lumbar spine around according to the size of the collimator in DR system. The size of the collimator were varied from $8^{\prime\prime}{\times}17^{\prime\prime}$ to $14^{\prime\prime}{\times}17^{\prime\prime}$ by 1" in AP and lateral projection for the lumbar spine radiography with RANDO phantom. The organ dose measured for liver, stomach, pancreas, kidney and gonad by the glass dosimeter. The image resolution was analyzed using the Image J program. The organ dose of around lumbar spine were reduced as the size of the collimator is decreased in AP projection. There were no significant changes decreasing rate whenever the size of the collimator were reduced 1" in the gonad. The organ dose showed higher on liver and kidney near the surface in lateral projection. There were decreasing rate of less than 5% in liver and kidney, but decreasing rate was 24.34% in the gonad whenever the size of the collimator were reduced 1". Organ dose difference for internal and external of collimator measured $549.8{\mu}Gy$ in the liver and $264.6{\mu}Gy$ in the stomach. There were no significant changes organ dose difference that measured $1,135.1{\mu}Gy$ in the gonad. Image Quality made no difference because SNR and PSNR were over than 30 dB when the collimator size is less than $9^{\prime\prime}{\times}17^{\prime\prime}$ on AP projection and $10^{\prime\prime}{\times}17^{\prime\prime}$ on lateral projection. Therefore, we are considered that the recommendations criterion for control of collimator were suggested in order to reduce unnecessary X-ray exposure and to obtain good image quality because lumbar spine radiography contains a lot of peripheral organs rather than other area radiography.

Efficacy of Small Bowel Displacement System in Post-Operative Pelvic Radiation Therapy of Rectal Cancer (소장 용적 측정을 통한 직장암의 수술 후 방사선치료 시 사용하는 소장 전위 장치(Small Bowel Displacement System : SBDS) 의 효용성 검토)

  • Ahn Yong Chan;Lim Do Hoon;Kim Moon Kyung;Wu Hong Gyun;Kim Dae Yong;Huh Seung Jae
    • Radiation Oncology Journal
    • /
    • v.16 no.1
    • /
    • pp.63-69
    • /
    • 1998
  • Purpose : This study is to evaluate the efficacy of small bowel displacement system(SBDS) in post-operative pelvic radiation therapy(RT) of rectal cancer patients by measurement of small bowel volume included in the radiation fields receiving therapeutic dose. Materials and Method : Ten consecutive new rectal cancer patients referred to the department of Radiation Oncology of Samsung Medical Center in May of 1997 were included in this study. All patients were asked to drink $Castrographin^(R)$ before simulation and were laid prone for conventional simulation and CT scans with and without SBDS. The volume of opacified small bowel on CT scans, which was to be included in the radiation fields receiving therapeutic dose, was measured using Picture archiving and communication system (PACS). Results : The average small bowel volumes with and without SBDS were 176.0ml(5.2-415.6ml) and 185.1ml(54.5-434.2ml), respectively The changes of small bowel volume with SBDS compared to those without SBDS were more than $10\%$ decrease in three, less than 10% decrease in two, less than $10\%$ increase in three, and more than $10\%$ increase in two patients. Conclusion : No significant advantage of using SBDS in post-operative pelvic RT for rectal cancer patients has been shown by small bowel volume measurement using CT scan considering additional effort and time needed for simulation and treatment setup.

  • PDF