• 제목/요약/키워드: X-ray/gamma radiation

검색결과 143건 처리시간 0.025초

고춧가루 오염 미생물의 제어에서 방사선종별 조사 효과 (Comparison of Irradiation Effect of Different Radiation Types on Decontamination of Microorganisms in Red Pepper Powder)

  • 박경숙
    • 방사선산업학회지
    • /
    • 제8권1호
    • /
    • pp.1-5
    • /
    • 2014
  • This study investigated the reduction of microbial population and sensory properties in red pepper powders irradiated by gamma ray, electron beam, and X-ray. Populations of total aerobic bacteria and yeast & molds in red pepper powders were decreased by irradiation treatment in a dose-dependent manner. Gamma ray, electron beam, and X-ray at doses above 8 kGy caused 100% inhibition on growth of aerobic bacteria in red pepper powders. Inhibitory activity of X-ray on sterilization of red pepper powders was significantly equal to or higher compared to gamma ray and electron beam. Color and off flavor in red pepper powders were no significant difference among the control and samples irradiated with gamma ray, electron beam, and X-ray. As a result, the gamma ray, electron beam, and X-ray irradiation can be used to sterilize the microbial growth in red pepper powders without quality loss.

A Copper Shield for the Reduction of X-γ True Coincidence Summing in Gamma-ray Spectrometry

  • Byun, Jong-In
    • Journal of Radiation Protection and Research
    • /
    • 제43권4호
    • /
    • pp.137-142
    • /
    • 2018
  • Background: Gamma-ray detectors having a thin window of a material with low atomic number can increase the true coincidence summing effects for radionuclides emitting X-rays or gamma-rays. This effect can make efficiency calibration or spectrum analysis more complicated. In this study, a Cu shield was tested as an X-ray filter to neglect the true coincidence summing effect by X-rays and gamma-rays in gamma-ray spectrometry, in order to simplify gamma-ray energy spectrum analysis. Materials and Methods: A Cu shield was designed and applied to an n-type high-purity germanium detector having an $X-{\gamma}$ summing effect during efficiency calibration. This was tested using a commercial, certified mixed gamma-ray source. The feasibility of a Cu shield was evaluated by comparing efficiency calibration results with and without the shield. Results and Discussion: In this study, the thickness of a Cu shield needed to avoid true coincidence summing effects due to $X-{\gamma}$ was tested and determined to be 1 mm, considering the detection efficiency desired for higher energy. As a result, the accuracy of the detection efficiency calibration was improved by more than 13% by reducing $X-{\gamma}$ summing. Conclusion: The $X-{\gamma}$ summing effect should be considered, along with ${\gamma}-{\gamma}$ summing, when a detection efficiency calibration is implemented and appropriate shielding material can be useful for simplifying analysis of the gamma-ray energy spectra.

Mechanical properties and radiation shielding performance in concrete with electric arc furnace oxidizing slag aggregate

  • Lim, Hee Seob;Lee, Han Seung;Kwon, Seung Jun
    • Journal of Ceramic Processing Research
    • /
    • 제20권4호
    • /
    • pp.363-371
    • /
    • 2019
  • In this study, physical properties of normal concrete, magnetite concrete, EAF concrete, and EAF concrete with added iron powder were evaluated and a feasibility of radiation shielding is also evaluated through irradiation tests against X-rays and gamma-rays. While the unit weight of EAF concrete (3.21 t/㎥) appeared lower than that of magnetite concrete (3.50 t/㎥), the results in compressive strength of EAF concrete were greater than those in magnetite and normal concrete. While the radiation transmission rate of normal concrete reaches 26.0% in the X-ray irradiation test, only 6.0% and 9.0% of transmission rate were observed in magnetite concrete and linear relationship with unit volume weight and radiation shielding. In the gamma-ray irradiation test, the performance of EAF and magnetite concretes appeared to be similar. Through the results on the excellent physical properties and radiation shielding performance a potential applicability of EAF concrete to radiation shielding was verified.

중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템 개발 (Development of Neutron, Gamma ray, X-ray Radiation Measurement and Integrated Control System)

  • 고태영;이주현;이승호
    • 전기전자학회논문지
    • /
    • 제21권4호
    • /
    • pp.408-411
    • /
    • 2017
  • 본 논문에서는 중성자, 감마선, 엑스선 등의 방사선을 측정하는 통합 제어 시스템을 제안한다. 제안하는 시스템은 원격 또는 네트워크상으로 측정 및 분석한 데이터를 디스플레이를 통해 모니터링 및 제어할 수 있는 장비로서, 현장에 가지 않고도 시스템 각 구성 부분의 상태를 보고 변경하여 원격으로 감시 및 관리할 수 있다. 제안하는 시스템은 감마선/엑스선 센서부, 중성자 센서부, 주제어 임베디드 시스템부, 전용 디스플레이 장치 및 GUI부, 원격 UI부 등으로 구성된다. 감마선/엑스선 센서부는 NaI(Tl) Scintillation Detector를 사용하여 저준위의 감마선 및 엑스선을 측정한다. 중성자 센서부는 Proportional Counter Detector(저준위 중성자)와 Ion Chamber Type Detector(고준위 중성자)를 사용하여 중성자를 측정한다. 주제어 임베디드 시스템부는 방사선을 검출하여 초단위로 샘플링하고 누적된 펄스 및 전류값에 대한 방사선량으로 변환한다. 전용 디스플레이 장치 및 GUI부는 방사선 측정 결과와 변환된 방사선량 및 방사능량 측정 수치를 출력하고, 사용자에게 제어 조건 설정 및 검출부에 대한 캘리브레이션 기능을 제공한다. 원격 UI부는 측정된 값들을 취합, 저장하여 원격 감시 시스템에 전달한다. 제안된 시스템의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과는 중성자 검출부는 ${\pm}8.2%$ 이하의 측정 불확도가 측정되었고, 감마선, 엑스선 검출부는 7.5%이하의 불확도가 측정되어 국제 표준인 ${\pm}15%$ 이하에서 정상동작 됨이 확인되었다.

상용 의학용 X-ray 필름의 특성곡선 (The Characteristic Curves of Commercial Medical X-ray Films)

  • 허훈;정연태;이재성
    • 한국인쇄학회지
    • /
    • 제19권2호
    • /
    • pp.12-21
    • /
    • 2001
  • For the purpose of determining characteristics of widely used commercial medical x-ray films, which are used for obtaining the Linac-grams for radiational treatment of cancers, we placed several commercial x-ray films at a fixed distance form the linear accelerator. After varying the exposed amount of radiation step by step, we could obtain a continually increasing density image for each film whose densities were determined by microdensitometer readings. The characteristic curves of the films were obtained by plotting the densities vs. the exposed radiation amounts, and their ${\gamma}$ values were determined. These values can be used to suggest a minimum necessary amount of exposed radiation to get a useful Linac-gram. The measured ${\gamma}$ values of the characteristic curves of the Kodak-DVP/RA-1 film were 1.73 when used 6MV x-ray, 1.70 when used 15MV of intensity. For the Konica-AX film, ${\gamma}$ values were 1.29 and 1.18 respectively. The result suggests that the effective conditions for high resolution of a L-gram be 6 MV of x-ray intensity and about 3 rad of exposed dose on a Kodak-DVP/RA-1 film.

  • PDF

Decomposition of Antibiotics (Cefaclor) by Ionizing Radiation: Optimization and Modeling Using a Design of Experiment (DOE) Based on Statistical Analysis

  • Yu, Seung-Ho;Chang, Soon-Woong;Lee, Si-Jin;Cho, Il-Hyoung
    • Environmental Engineering Research
    • /
    • 제14권2호
    • /
    • pp.81-87
    • /
    • 2009
  • The decomposition of antibiotics (cefaclor) by gamma irradiation in aqueous solutions was experimentally evaluated. To obtain a mutual interaction between two factors (antibiotics concentrations and radiation doses) and to optimize these factors during the process, experimental design and statistical analysis were employed. The decomposition capability of the gamma radiation was also mathematically described as a function of cefaclor concentration and gamma-ray dose using the statistical analysis. The results showed that the cefaclor concentration ($X_1$) in the response $Y_1$ (Reduction of cefaclor concentration) and gamma-ray dose ($X_2$) in the response $Y_2$ (Removal efficiency (%) of cefaclor concentration) exhibited a significantly positive effect, whereas gamma-ray dose ($X_2$) in the response $Y_1$ showed a significantly negative effect. The estimated ridge of maximum responses and optimal conditions for $Y_1$:($X_1$,$X_2$)=(25 mg/L, 350 Gy) and $Y_2$:($X_1$,$X_2$)=(21 mg/L, 565 Gy) using canonical analysis were 4.37 mg/L of reduction of cefaclor concentration and 98.35% of removal efficiency of cefaclor concentration, respectively. The measurement values agreed well with the predicted ones, thereby confirming the suitability of the model for $Y_1$ and $Y_2$ and the success of the experimental design in optimizing the conditions of the gamma irradiation process.

GALAXY CLUSTERS IN GAMMA-RAYS: AN ASSESSMENT FROM OBSERVATIONS

  • REIMER OLAF
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.307-313
    • /
    • 2004
  • Clusters of galaxies are believed to constitute a population of astrophysical objects potentially able to emit electromagnetic radiation up to gamma-ray energies. Evidence of the existence of non-thermal radiation processes in galaxy clusters is indicated from observations of diffuse radio halos, hard X-ray and EUV excess emission. The presence of cosmic ray acceleration processes and its confinement on cosmological timescales nearly inevitably yields in predicting energetic gamma-ray emission, either directly deduceably from a cluster's multifreqency emission characteristics or indirectly during large-scale cosmological structure formation processes. This theoretical reasoning suggests several scenarios to actually detect galaxy clusters at gamma-ray wavelengths: Either resolved as individual sources of point-like or extended gamma-ray emission, by investigating spatial-statistical correlations with unidentified gamma-ray sources or, if unresolved, through their contribution to the extragalactic diffuse gamma-ray background. In the following I review the situation concerning the proposed relation between galaxy clusters and high-energy gamma-ray observations from an observational point-of-view.

Effects of Ionizing Radiation on Postharvest Fungal Pathogens

  • Jeong, Rae-Dong;Shin, Eun-Jung;Chu, Eun-Hee;Park, Hae-Jun
    • The Plant Pathology Journal
    • /
    • 제31권2호
    • /
    • pp.176-180
    • /
    • 2015
  • Postharvest diseases cause losses in a wide variety of crops around the world. Irradiation, a useful nonchemical approach, has been used as an alternative treatment for fungicide to control plant fungal pathogens. For a preliminary study, ionizing radiations (gamma, X-ray, or e-beam irradiation) were evaluated for their antifungal activity against Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer through mycelial growth, spore germination, and morphological analysis under various conditions. Different fungi exhibited different radiosensitivity. The inhibition of fungal growth showed in a dose-dependent manner. Three fungal pathogens have greater sensitivity to the e-beam treatment compared to gamma or X-ray irradiations. The inactivation of individual fungal-viability to different irradiations can be considered between 3-4 kGy for B. cinerea and 1-2 kGy for P. expansum and R. stolonifer based on the radiosensitive and radio-resistant species, respectively. These preliminary data will provide critical information to control postharvest diseases through radiation.

A Study of Shielding Properties of X-ray and Gamma in Barium Compounds

  • Seenappa, L.;Manjunatha, H.C.;Chandrika, B.M.;Chikka, Hanumantharayappa
    • Journal of Radiation Protection and Research
    • /
    • 제42권1호
    • /
    • pp.26-32
    • /
    • 2017
  • Background: Ionizing radiation is known to be harmful to human health. The shielding of ionizing radiation depends on the attenuation which can be achieved by three main rules, i.e. time, distance and absorbing material. Materials and Methods: The mass attenuation coefficient, linear attenuation coefficient, Half Value Layer (HVL) and Tenth Value Layer (TVL) of X-rays (32 keV, 74 keV) and gamma rays (662 keV) are measured in Barium compounds. Results and Discussion: The measured values agree well with the theory. The effective atomic numbers ($Z_{eff}$) and electron density (Ne) of Barium compounds have been computed in the wide energy region 1 keV to 100 GeV using an accurate database of photon-interaction cross sections and the WinXCom program. Conclusion: The mass attenuation coefficient and linear attenuation coefficient for $BaCO_3$ is higher than the $BaCl_2$, $Ba(No_3)_2$ and BaSO4. HVL, TVL and mean free path are lower for $BaCO_3$ than the $BaCl_2$, $Ba(No_3)_2$ and $BaSO_4$. Among the studied barium compounds, $BaCO_3$ is best material for x-ray and gamma shielding.

식품 살균을 위한 X선 조사 기술의 활용 및 전망 (The potential of X-ray irradiation as a new pasteurization technology for food)

  • 임종성;하재원
    • 식품과학과 산업
    • /
    • 제53권3호
    • /
    • pp.264-276
    • /
    • 2020
  • Ionizing radiation is one of the efficient non-thermal pasteurization methods. The US Food and Drug Administration (FDA) allows the use of ionizing radiation to a dose up to 10 kGy for controlling foodborne pathogens and extending the self-life of foods. Recently X-rays, generated on absorption of high energy electrons in an appropriate metal target, have been used commercially for sterilization purposes. X-rays have the advantages of higher penetration power than E-beams and absence of harmful radioactive sources, such as Cobalt-60 or Cesium-137 associated with gamma-rays. That is why it has continued to receive attention as an attractive alternative to gamma-ray or E-beam irradiation. In this article, the potential of X-ray irradiation for controlling foodborne pathogens in various food products and necessary pre-requisite knowledge for the introduction of X-ray irradiation to the Korean food industry will be provided.