Mechanical properties and radiation shielding performance in concrete with electric arc furnace oxidizing slag aggregate

  • Lim, Hee Seob (Department of Civil Engineering, Hannam University) ;
  • Lee, Han Seung (Department of Architecture Engineering, Hanyang University-ERICA) ;
  • Kwon, Seung Jun (Department of Civil Engineering, Hannam University)
  • Received : 2019.02.15
  • Accepted : 2019.07.24
  • Published : 2019.08.01

Abstract

In this study, physical properties of normal concrete, magnetite concrete, EAF concrete, and EAF concrete with added iron powder were evaluated and a feasibility of radiation shielding is also evaluated through irradiation tests against X-rays and gamma-rays. While the unit weight of EAF concrete (3.21 t/㎥) appeared lower than that of magnetite concrete (3.50 t/㎥), the results in compressive strength of EAF concrete were greater than those in magnetite and normal concrete. While the radiation transmission rate of normal concrete reaches 26.0% in the X-ray irradiation test, only 6.0% and 9.0% of transmission rate were observed in magnetite concrete and linear relationship with unit volume weight and radiation shielding. In the gamma-ray irradiation test, the performance of EAF and magnetite concretes appeared to be similar. Through the results on the excellent physical properties and radiation shielding performance a potential applicability of EAF concrete to radiation shielding was verified.

Keywords

References

  1. O. Gencel, Fire. Mater. 36[3] (2012) 217-230. https://doi.org/10.1002/fam.1102
  2. A.M. El-Khayatt, Ann. Nucl. Energy. 37[7] (2010) 991-995. https://doi.org/10.1016/j.anucene.2010.03.001
  3. I. Akkurt, C. Basyigit, S. Kilincarslan, and B. Mavi, Prog. Nucl. Energy. 46[1] (2005) 1-11. https://doi.org/10.1016/j.pnucene.2004.09.015
  4. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi and A. Akkurt, Cem. Concr. Compos. 28[2] (2006) 153-157. https://doi.org/10.1016/j.cemconcomp.2005.09.006
  5. I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Ann. Nucl. Energy. 37[7] (2010) 910-914. https://doi.org/10.1016/j.anucene.2010.04.001
  6. I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Prog. Nucl. Energy. 52[7] (2010) 620-623. https://doi.org/10.1016/j.pnucene.2010.04.006
  7. M.H. Kharita, M. Takeyeddin, M. Alnassar, S. Yousef, Prog. Nucl. Energy. 50[1] (2008) 33-36. https://doi.org/10.1016/j.pnucene.2007.10.004
  8. A. Mesbahi, A.A. Azarpeyvand, A. Shirazi, Ann. Nucl. Energy. 38[12] (2011) 2752-2756. https://doi.org/10.1016/j.anucene.2011.08.023
  9. A.E.S. Abdo, M.A.M. Ali, M.R. Ismail, Ann. Nucl. Energy. 30[4] (2003) 391-403. https://doi.org/10.1016/S0306-4549(02)00074-9
  10. O. Gencel, F. Koksal, C. Ozel, W. Brostow, Constr. Build. Mater. 29 2012) 633-640. https://doi.org/10.1016/j.conbuildmat.2011.11.026
  11. S. Xu, M. Bourham, A. Rabiei, Mater. Des. 31[4] (2010) 2140-2146. https://doi.org/10.1016/j.matdes.2009.11.011
  12. ACI 304.3R-96. ACI Committee Report (1996) 1-8.
  13. D.R. Ochbelagh, S. Azimkhani, H.G. Mosavinejad, Nucl. Eng. Des. 241[6] (2011) 2359-2363. https://doi.org/10.1016/j.nucengdes.2011.03.001
  14. A. Sharma, G.R. Reddy, L. Varshney, H. Bharathkumar, K.K. Vaze, A.K. Ghosh, H.S. Kushwaha, T.S. Krishnamoorthy, Nucl. Eng. Des. 239[7] (2009) 1180-1185. https://doi.org/10.1016/j.nucengdes.2009.02.017
  15. I. Turkmen, Y. Ozdemir, M. Kurudirek, F. Demir, O. Simsek, R. Demirboga, Ann. Nucl. Energy. 35[10] (2008) 1937-1943. https://doi.org/10.1016/j.anucene.2008.03.012
  16. M.N. Alam, M.M.H. Miah, M.I. Chowdhury, M. Kamal, S. Ghose, R. Rahman, Appl. Radiat. Isot. 54[6] (2001) 973-976. https://doi.org/10.1016/S0969-8043(00)00354-7
  17. I.C.P. Salinas, C.C. Conti, R.T. Lopes, Appl. Radiat. Isot. 64[1] (2006) 13-18. https://doi.org/10.1016/j.apradiso.2005.07.003
  18. M.E. Medhat, Ann. Nucl. Energy. 36[6] (2009) 849-852. https://doi.org/10.1016/j.anucene.2009.02.006
  19. C. Singh, T. Singh, A. Kumar, G.S. Mudahar, Ann. Nucl. Energy. 31[10] (2004) 1199-1205. https://doi.org/10.1016/j.anucene.2004.02.002
  20. M. Maslehuddin, A.A. Naqvi, M. Ibrahim, Z. Kalakada, Ann. Nucl. Energy. 53 (2013) 192-196. https://doi.org/10.1016/j.anucene.2012.09.006
  21. N. Saca, L. Radu, V. Fugaru, M. Gheorghe, I. Petre, J. Clean. Prod. 179 (2018) 255-265. https://doi.org/10.1016/j.jclepro.2018.01.045
  22. M. Papachristoforou, and I. Papayianni, Radiat. Phys. Chem. 149 (2018) 26-32. https://doi.org/10.1016/j.radphyschem.2018.03.010
  23. G. Salihoglu, and V. Pinarli, J. Hazard. Mater. 153[3] (2008) 1110-1116. https://doi.org/10.1016/j.jhazmat.2007.09.066
  24. G. Wang, Y. Wang, Z. Gao, J. Hazard. Mater. 184 (2010) 555-560. https://doi.org/10.1016/j.jhazmat.2010.08.071
  25. G. Wang, Constr. Build. Mater. 24[10] (2010) 1961-1966. https://doi.org/10.1016/j.conbuildmat.2010.04.004
  26. G. Adegoloye, A.L. Beaucour, S. Ortola, A. Noumowe, Constr. Build. Mater. 76 (2015) 313-321. https://doi.org/10.1016/j.conbuildmat.2014.12.007
  27. N.H. Roslan, M. Ismail, Z. Abdul-Majid, S. Ghoreishiamiri, B. Muhammad, Constr. Build. Mater. 104 (2016) 16-24. https://doi.org/10.1016/j.conbuildmat.2015.12.008
  28. J.T. San-Jose, I. Vegas, I. Arribas, I. Marcos, Mater. Des. 60 (2014) 612-619. https://doi.org/10.1016/j.matdes.2014.04.030
  29. A. Santamaria, A. Orbe, M.M. Losanez, M. Skaf, V. Ortega-Lopez, J.J. Gonzalez, Mater. Des. 115 (2017) 179-193. https://doi.org/10.1016/j.matdes.2016.11.048
  30. F. Faleschini, K. Brunelli, M.A. Zanini, M. Dabala, C. Pellegrino, J. Sustain. Metall. 2[1] (2016) 44-50. https://doi.org/10.1007/s40831-015-0029-1
  31. F. Faleschini, M.A. Fernandez-Ruiz, M.A. Zanini, K. Brunelli, C. Pellegrino, E. Hernandez-Montes, Constr. Build. Mater. 101 (2015) 113-121. https://doi.org/10.1016/j.conbuildmat.2015.10.022
  32. N. Faraone, G. Tonello, E. Furlani, S. Maschio, Chemosphere. 77[8] (2009) 1152-1156. https://doi.org/10.1016/j.chemosphere.2009.08.002
  33. H. Qasrawi, F. Shalabi, I. Asi, Constr. Build. Mater. 23[2] (2009) 1118-1125. https://doi.org/10.1016/j.conbuildmat.2008.06.003