• 제목/요약/키워드: X-braced seismic frames

검색결과 18건 처리시간 0.024초

Seismic behavior of concentrically steel braced frames and their use in strengthening of reinforced concrete frames by external application

  • Unal, Alptug;Kaltakci, Mevlut Yasar
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.687-702
    • /
    • 2016
  • There are many studies in the literature conducted on the subject of ensuring earthquake safety of reinforced concrete and steel structures using steel braced frames, but no detailed study concerning individual behavior of steel braced frames under earthquake loads and strengthening of reinforced concrete structures with out-of-plane steel braced frames has been encountered. In this study, in order to evaluate behaviors of "Concentrically Steel Braced Frames" types defined in TEC-2007 under lateral loads, dimensional analysis of Concentrically Steel Braced Frames designed with different scales and dimensions was conducted, the results were controlled according to TEC-2007, and after conducting static pushover analysis, behavior and load capacity of the Concentrically Steel Braced Frames and hinges sequence of the elements constituting the Concentrically Steel Braced Frames were tested. Concentrically Steel Braced Frames that were tested analytically consist of 2 storey and one bay, and are formed as two groups with the scales 1/2 and 1/3. In the study, Concentrically Steel Braced Frames described in TEC-2007 were designed, which are 7 types in total being non-braced, X-braced, V- braced, $\wedge$- braced, $\backslash$- braced, /- braced and K- braced. Furthermore, in order to verify accuracy of the analytic studies performed, the 1/2 scaled concentrically steel X-braced frame test element made up of box profiles and 1/3 scaled reinforced concrete frame with insufficient earthquake resistance were tested individually under lateral loads, and test results were compared with the results derived from analytic studies and interpreted. Similar results were obtained from both experimental studies and pushover analyses. According to pushover analysis results, load-carrying capacity of 1/3 scaled reinforced concrete frames increased up to 7,01 times as compared to the non-braced specimen upon strengthening. Results acquired from the study revealed that reinforced concrete buildings which have inadequate seismic capacity can be strengthened quickly, easily and economically by this method without evacuating them.

Seismic design rules for ductile Eurocode-compliant two-storey X concentrically braced frames

  • Costanzo, Silvia;D'Aniello, Mario;Landolfo, Raffaele
    • Steel and Composite Structures
    • /
    • 제36권3호
    • /
    • pp.273-291
    • /
    • 2020
  • Two-storey X-bracings are currently very popular in European practice, as respect to chevron and simple X bracings, owing to the advantages of reducing the bending demand in the brace-intercepted beams in V and inverted-V configurations and optimizing the design of gusset plate connections. However, rules for two-storey X braced frames are not clearly specified within current version of EN1998-1, thus leading to different interpretations of the code by designers. The research presented in this paper is addressed at investigating the seismic behaviour of two-storey X concentrically braced frames in order to revise the design rules within EN1998-1. Therefore, five different design criteria are discussed, and their effectiveness is investigated. With this aim, a comprehensive numerical parametric study is carried out considering a set of planar frames extracted from a set of structural archetypes that are representative of regular low, medium and high-rise buildings. The obtained results show that the proposed design criteria ensure satisfactory seismic performance.

Evaluation of seismic criteria of built-up special concentrically braced frames

  • Izadi, Amin;Aghakouchak, Ali A.
    • Steel and Composite Structures
    • /
    • 제29권1호
    • /
    • pp.23-37
    • /
    • 2018
  • In this paper, seismic provisions related to built-up special concentrically braced frames (BSCBFs) are investigated under cyclic loading using non-linear finite element analysis of a single-bay single-story frame. These braces, which contain double angle and double channel brace sections, are considered in two types of single diagonal and X-braced frames. The results of this study show that current seismic provisions such as observing the 0.4 ratio for slenderness ratio of individual elements between stitch connectors are conservative in BSCBFs, and can be increased according to the type of braces. Furthermore, such increments will lead to decreasing or remaining the current middle protected zone requirements of each BSCBFs. Failure results of BSCBFs, which are related to the plastic equivalent strain growth of members and ductility capacity of the models, show that the behaviors of double channel back-to-back diagonal braces are more desirable than those of similar face-to-face ones. Also, for double angle diagonal braces, results show that the failure of back-to-back BSCBFs occurs faster in comparison with face-to-face similar braces. In X-braced frames, cyclic and failure behaviors of built-up face-to-face models are more desirable than similar back-to-back braces in general.

중앙부 거셋플레이트의 다층 X-형 가새골조 거동에 미치는 영향 (Effect of Mid-span Gusset Plates on the Behavior of Multi-Story X-Braced Frames)

  • 유정한
    • 한국강구조학회 논문집
    • /
    • 제25권2호
    • /
    • pp.179-186
    • /
    • 2013
  • 가새골조는 가장 경제적이고 효과적인 내진시스템 중 하나로써 자주 사용된다. 그러나 중앙부 거셋플레이트를 포함하는 다층 X-형 가새골조의 경우, 실무에서 뿐만 아니라 거동에 대한 연구도 드물다. 그 결과, 이 시스템의 내진 성능과 접합부 설계에 미치는 영향은 아직 잘 알려져 있지 않다. 이 영향을 파악하기 위해 선행해석연구가 수행됐고 이 선행연구는 실험체 제작 전에 수행되어 시스템 거동을 예측하고 효과적인 디자인을 위해 수행되었다. 선행연구 결과를 보면 중앙부(X 교차부) 거셋플레이트와 코너부 거셋플레이트의 거동이 상당히 다르다는 것을 알 수 있다. 선행연구의 결과로 결정된 실제크기의 2층 중심가새골조 실험체의 실험결과와 해석결과를 요약하였고 그 결과를 비교하였다.

Experimental and analytical study in determining the seismic performance of the ELBRF-E and ELBRF-B braced frames

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • 제37권5호
    • /
    • pp.571-587
    • /
    • 2020
  • In this article the seismic demand and performance of two recent braced steel frames named steel moment frames with the elliptic bracing (ELBRFs) are assessed through a laboratory program and numerical analyses of FEM. Here, one of the specimens is without connecting bracket from the corner of the frame to the elliptic brace (ELBRF-E), while the other is with the connecting brackets (ELBRF-B). In both the elliptic braced moment resisting frames (ELBRFs), in addition to not having any opening space problem in the bracing systems when installed in the surrounding frames, they improve structure's behavior. The experimental test is run on ½ scale single-story single-bay ELBRF specimens under cyclic quasi-static loading and compared with X-bracing and SMRF systems in one story base model. This system is of appropriate stiffness and a high ductility, with an increased response modification factor. Moreover, its energy dissipation is high. In the ELBRF bracing systems, there exists a great interval between relative deformation at the yield point and maximum relative deformation after entering the plastic region. In other words, the distance from the first plastic hinge to the collapse of the structure is fairly large. The experimental outcomes here, are in good agreement with the theoretical predictions.

Effect of seismic design level on safety against progressive collapse of concentrically braced frames

  • Rezvani, Farshad Hashemi;Asgarian, Behrouz
    • Steel and Composite Structures
    • /
    • 제16권2호
    • /
    • pp.135-156
    • /
    • 2014
  • In this research the effect of seismic design level as a practical approach for progressive collapse mitigation and reaching desired structural safety against it in seismically designed concentric braced frame buildings was investigated. It was achieved by performing preliminary and advanced progressive collapse analysis of several split-X braced frame buildings, designed for each seismic zone according to UBC 97 and by applying various Seismic Load Factors (SLFs). The outer frames of such structures were studied for collapse progression while losing one column and connected brace in the first story. Preliminary analysis results showed the necessity of performing advanced element loss analysis, consisting of Vertical Incremental Dynamic Analysis (VIDA) and Performance-Based Analysis (PBA), in order to compute the progressive collapse safety of the structures while increasing SLF for each seismic zone. In addition, by sensitivity analysis it became possible to introduce the equation of structural safety against progressive collapse for concentrically braced frames as a function of SLF for each seismic zone. Finally, the equation of progressive collapse safety as a function of bracing member capacity was presented.

Soft story retrofit of low-rise braced buildings by equivalent moment-resisting frames

  • Ebadi, Parviz;Maghsoudi, Ahmad;Mohamady, Hessam
    • Structural Engineering and Mechanics
    • /
    • 제68권5호
    • /
    • pp.621-632
    • /
    • 2018
  • Soft-story buildings have bottom stories much less rigid than the top stories and are susceptible to earthquake damage. Therefore, the seismic design specifications need strict design considerations in such cases. In this paper, a four-story building was investigated as a case study and the effects of X-braces elimination in its lower stories studied. In addition, the possibility of replacement of the X-braces in soft-stories with equivalent moment resisting frame inspected in two different phases. In first phase, the stiffness of X-braces and equivalent moment-resisting frames evaluated using classic equations. In final phase, diagonals removed from the lowest story to develop a soft-story and replaced with moment resisting frames. Then, the seismic stiffness variation of moment-resisting frame evaluated using nonlinear static and dynamic analyses. The results show that substitution of braced frames with an equivalent moment-resisting frame of the same stiffness increases story drift and reduces energy absorption capacity. However, it is enough to consider the needs of building codes, even using equivalent moment resisting frame instead of X-Braces, to avoid soft-story stiffness irregularity in seismic design of buildings. Besides, soft-story development in the second story may be more critical under strong ground excitations, because of interaction of adjacent stories.

가새좌굴을 고려한 X형 내진 가새골조의 기둥축력 산정법 (Prediction of Column Axial Force in X-braced Seismic Steel Frames Considering Brace Buckling)

  • 윤원순;이철호;김정재
    • 한국강구조학회 논문집
    • /
    • 제26권6호
    • /
    • pp.523-535
    • /
    • 2014
  • 현 내진기준의 근간인 역량설계법(capacity design)에 의할 때, 중심가새골조의 내진설계는 기둥 및 보부재는 탄성부재로, 가새부재는 반복적인 인장과 압축을 통해 지진에너지를 소산하는 비탄성 부재로 설계되어야 한다. 가새부재는 에너지를 소산하는 과정에서 기둥부재에 추가적인 축력을 유입시키므로, 이 추가 축력을 고려하여 기둥부재를 탄성설계해야 한다. 현행 기준은 중심가새골조의 기둥부재 설계시 전층의 가새가 동시에 인장항복 및 좌굴하는 가장 보수적인 상황을 가정하여 기둥의 축력을 산정하거나 특별지진하중에 대해 기둥을 설계하는 방법을 제안하고 있다. 그러나 전층의 가새가 동시에 좌굴할 가능성은 희박하며, 특별지진하중에는 시스템 초과강도라는 경험적이고 우회적인 요소가 도입되었다는 한계가 있다. 이와 같은 문제점을 극복하기 위한 몇몇 선행 관련 연구들 역시 가새의 좌굴을 명시적으로 고려하지 못하였을 뿐더러 역학적 근거도 희박하다. 최근에 행해진 연구 중에서 역 V형 중심 가새골조를 대상으로, 기존의 기둥축력 산정법이 가지는 한계를 극복할 수 있는 새로운 기둥축력 산정법이 제안된 바가 있다. 하지만 역 V형 중심 가새골조와 X형 중심 가새골조의 하중전달 메커니즘은 상이하기 때문에 이 축력산정법을 X형 가새골조에 그대로 적용할 수는 없다. 따라서 본 연구에서는 X형 중심가새골조만의 역학적 특성을 고려한 네 가지의 기둥축력 산정법을 제안하였다. 특히 모달질량을 가중치로 고려하여 고차모드의 영향을 반영할 수 있는 새로운 방안을 제시하였다. 방대한 지진데이터를 입력으로 한 비선형 동적해석을 수행하여 제시된 방안의 타당성을 평가하였다.

Fragility assessment of buckling-restrained braced frames under near-field earthquakes

  • Ghowsi, Ahmad F.;Sahoo, Dipti R.
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.173-190
    • /
    • 2015
  • This study presents an analytical investigation on the seismic response of a medium-rise buckling-restrained braced frame (BRBF) under the near-fault ground motions. A seven-story BRBF is designed as per the current code provisions for five different combinations of brace configurations and beam-column connections. Two types of brace configurations (i.e., Chevron and Double-X) are considered along with a combination of the moment-resisting and the non-moment-resisting beam-to-column connections for the study frame. Nonlinear dynamic analyses are carried out for all study frames for an ensemble of forty SAC near-fault ground motions. The main parameters evaluated are the interstory and residual drift response, brace displacement ductility, and plastic hinge mechanisms. Fragility curves are developed using log-normal probability density functions for all study frames considering the interstory drift ratio and residual drift ratio as the damage parameters. The average interstory drift response of BRBFs with Double-X brace configurations significantly exceeded the allowable drift limit of 2%. The maximum displacement ductility characteristics of BRBs is efficiently utilized under the seismic loading if these braces are arranged in the Double-X configurations instead of Chevron configurations in BRBFs located in the near-fault regions. However, BRBFs with the Double-X brace configurations exhibit the higher interstory drift and residual drift response under near-fault ground motions due to the formation of plastic hinges in the columns and beams at the intermediate story levels.

강골조 구조물의 내진 최적설계에 의한 브레이스 부재 배치에 관한 연구 (The Study on the Placements of Brace Members Using Optimum Seismic Design of Steel Frames)

  • 김기욱;박문호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.111-119
    • /
    • 2005
  • 본 연구는 지진하중을 고려한 브레이스된 강골조 구조물의 연속 및 이산화 최적설계에 관한 내용이다. 구조해석과 연속 및 이산화 최적설계를 동시에 수행할 수 있는 최적설계 프로그램을 개발하여 이를 브레이스가 없는 경우, Z-형(V), Z-형(역V), X-형(A), X-형(B), X-형(C), K-형 등의 다양한 브레이스 배치형태를 사용한 강골조 구조물에 적용하였고, 정하중, 지진하중을 고려하여 해석하였다. AISC-ASD 시방규정과 ATC-3-06에 규정한 사용성, 허용층간변위 및 다양한 제약조건을 모두 만족하는 최소중량, 설계변수 등을 도출하고, 다양한 예들의 해석결과를 비교 분석하여 내진에 적합한 브레이스 배치 형태를 제시하고자 하는데 그 목적이 있다.