Browse > Article
http://dx.doi.org/10.12989/scs.2020.37.5.571

Experimental and analytical study in determining the seismic performance of the ELBRF-E and ELBRF-B braced frames  

Jouneghani, Habib Ghasemi (Department of Civil Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University)
Haghollahi, Abbas (Department of Civil Engineering, Faculty of Civil Engineering, Shahid Rajaee Teacher Training University)
Publication Information
Steel and Composite Structures / v.37, no.5, 2020 , pp. 571-587 More about this Journal
Abstract
In this article the seismic demand and performance of two recent braced steel frames named steel moment frames with the elliptic bracing (ELBRFs) are assessed through a laboratory program and numerical analyses of FEM. Here, one of the specimens is without connecting bracket from the corner of the frame to the elliptic brace (ELBRF-E), while the other is with the connecting brackets (ELBRF-B). In both the elliptic braced moment resisting frames (ELBRFs), in addition to not having any opening space problem in the bracing systems when installed in the surrounding frames, they improve structure's behavior. The experimental test is run on ½ scale single-story single-bay ELBRF specimens under cyclic quasi-static loading and compared with X-bracing and SMRF systems in one story base model. This system is of appropriate stiffness and a high ductility, with an increased response modification factor. Moreover, its energy dissipation is high. In the ELBRF bracing systems, there exists a great interval between relative deformation at the yield point and maximum relative deformation after entering the plastic region. In other words, the distance from the first plastic hinge to the collapse of the structure is fairly large. The experimental outcomes here, are in good agreement with the theoretical predictions.
Keywords
elliptic braced moment resisting frame; lateral bracing system; experimental behavior; seismic demand; seismic performance; nonlinear static pushover analysis; energy absorption;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Hibbitt, Karlsson, & Sorenson, Inc., (HKS) (2001), ABAQUS/Explicit User's Manual. Version 6.2, Hibbitt, Karlsson, & Sorenson Inc., Pawtucket, Rhode Island.
2 IBC (International Building Code) (2015), Structure Engineering Design Provision.
3 Khorami, M., Khorami, M., Motahar, H., Alvansazyazdi, M., Shariati, M., Jalali A. and Tahir, M.M. (2017), "Evaluation of the seismic performance of special moment frames using incremental nonlinear dynamic analysis", Struct. Eng. Mech., 63(2), 259-268. https://doi.org/10.12989/sem.2017.63.2.259.   DOI
4 Krawinkler, H. and Seneviratna, G. (1998), "Pros and cons of a pushover analysis of seismic performance evaluation", J. Struct. Eng., 20, 452-464. https://doi.org/10.1016/S0141-0296(97)00092-8.   DOI
5 Li, Z. and Shu, G. (2019), "Hysteresis characterization and identification of the normalized Bouc-Wen model", Struct. Eng. Mech., 70(2), 209-219. https://doi.org/10.12989/sem.2019.70.2.209.   DOI
6 Lubell, A.S. (2001), "Performance of un-stiffened steel plate shear walls under cyclic quasi-static loading", M.A. Sc.
7 Martinelli, L., Mulas, M.G. and Perotti, F. (1996), "The seismic response of concentrically braced moment resisting steel frames", J. Earthq. Eng. Struct. Dyn., 25, 1275-1299. https://doi.org/10.1002/(SICI)109-69845(199611)25:11<1275::AID-EQE616>3.0.CO;2-U.   DOI
8 Yahmi, D., Branci, T., Bouchaïr, A. and Fournely, E. (2017), "Evaluation of behaviour factors of steel moment-resisting frames using standard pushover method", J. Procedia Eng., 199, 397-403. https://doi.org/10.1016/j.proeng.2017.09.130.   DOI
9 Yoo, J.H., Lehman, D.E. and Roeder, C.W. (2008), "Influence of connection design parameters on the seismic performance of braced frames", J. Constr. Steel Res., 64, 607-623. https://doi.org/10.1016/j.jcsr.2007.11.005.   DOI
10 Jalali Larijani, R., Dashti Nasserabadi, H. and Aghayan, I. (2017), "Progressive collapse analysis of buildings with concentric and eccentric braced frames", Struct. Eng. Mech., 61(6), 755-763. https://doi.org/10.12989/sem.2017.61.6.755.   DOI
11 Balendra, T., Sam, M.T., Liaw, C.Y. and Lee, S.L. (1991), "Preliminary studies into the behavior of knee braced frames subject to seismic loading", J. Eng. Struct., 13, 67-74. https://doi.org/10.1016/0141-0296(91)90010-A.   DOI
12 Naderpour, M.N. and Aghakouchak, A. (2018), "Probabilistic damage assessment of concentrically braced frames with built up braces", J. Constr. Steel Res., 147, 191-202. https://doi.org/10.1016/j.jcsr.2018.04.011.   DOI
13 Newmark, N.M. and Hall, W.J. (1982), Earthquake spectra and design. El Cerrito, Calif: J. Earthq. Eng. Res. Institute.
14 Palazzo, G.; LUpez-Almansa, F.; Cahis, X. and Crisafulli, F. (2009), "A low-tech dissipative buckling restrained brace. Design, analysis, production and testing", J. Eng. Struct., 31, 2152-2161. https://doi.org/10.1016/j.engstruct.2009.03.015.   DOI
15 Roeder, C.W. and Popov, E.P. (1977), "Inelastic behavior of eccentrically braced steel frames under cyclic loadings, NASA", STI/Recon Technical Report N 78, 1977.
16 Maryam Samimifar, M., Massumi, A. and Moghadam, A.S. (2019), "A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems", Struct. Eng. Mech., 70(3), 289-301. https://doi.org/10.12989/sem.2019.70.3.289.   DOI
17 Bastami, M. and Jaza, R.A. (2018), "Development of Eccentrically Interconnected Braced Frame (EIC-BF) for seismic regions", J. Thin-Wall. Struct., 131, 451-463. DOI: https://doi.org/10.1016/j.tws.2018.07.021.   DOI
18 Baijian, B., Fuxing, Z., Yi, W. and Fei, W. (2016), "Effect of pre-stressed cable on pre-stressed mega-braced steel frame", J. Struct. Eng. Mech., 59(2), 327-341. https://doi.org/10.12989/sem.2016.59.2.327.   DOI
19 Bosco, M., Marino, E.M. and Rossi, P.P. (2016), "Influence of modelling of steel link beams on the seismic response of EBFs", J. Eng. Struct., 127, 459-474. https://doi.org/10.1016/j.engstruct.2016.08.062.   DOI
20 Chikh, B., Mehani, Y. and Leblouba., M. (2016), "Simplified procedure for seismic demands assessment of structures", J. Struct. Eng. Mech., 59(3), 455-473. https://doi.org/10.12989/sem.2016.59.3.455.   DOI
21 Erochko, J. and Christopoulos, C. (2013), "Robert Tremblay and Hyung-Joon Kim (2013) "Shake table testing and numerical simulation of a self-centering energy dissipative braced frame", J. Earth. Eng. Struct. Dyn., 42, 1617-1635. https://doi.org/10.1002/eqe.2290.   DOI
22 Fanaie, N., Aghajani S. and Dizaj. E.A. (2016), "Strengthening of moment-resisting frame using cable-cylinder bracing", J. Adv. Struct. Eng., 1-19. https://doi.org/10.1177/1369433216649382.   DOI
23 Fanaie, N. and Dizaj, E.A. (2014), "Response modification factor of the frames braced with reduced yielding segment BRB", Struct. Eng. Mech., 50(1), 1-17. https://doi.org/10.12989/sem.2014.50.1.001.   DOI
24 Fanaie, N., Aghajani, S. and Afsar Dizaj, E. (2016), "Strengthening of moment-resisting frame using cable-cylinder bracing", J. Adv. Struct. Eng., 19(11), 1-19. https://doi.org/10.1177/1369433216649382.   DOI
25 Fanaie, N. and Ezzatshoar, S. (2014), "Studying the seismic behavior of gate braced frames by incremental dynamic analysis (IDA)", J. Constr. Steel Res., 99, 111-120. https://doi.org/10.1016/j.jcsr.2014.04.008.   DOI
26 FEMA (2000), (Federal Emergency Management Agency), Commentary for the Seismic Rehabilitation of Buildings, FEMA-356, Washington, DC.
27 FEMA (2001), "Seismic design criteria for new moment-resisting steel frame construction", Federal Emergency Management Agency Report No. 350.
28 AISC 360-10 (2010), "Specification for Structural Steel Buildings", American Institute of Steel Construction, Chicago, IL.
29 Ghasemi, J.H., Haghollahi, A., Moghaddam, H. and Sarvghad Moghadam, A.R. (2016), "Study of the seismic performance of steel frames in the elliptic bracing", JVE Int. LTD. J. Vibroeng.. 5, 2974-2985. https://doi.org/10.21595/jve.2016.16858.   DOI
30 Ghasemi, J.H., Haghollahi, A., Moghaddam, H. and Sarvghad Moghadam, A.R. (2016), "Assessing seismic performance of elliptic braced moment resisting frame through pushover method". J. Rehabilitation in Civil Eng. (JRCE). 2, 1-17. https://doi.org/10.22075/JRCE.2018.13030.1232.   DOI
31 Alavi, E. and Nateghi. F. (2013), "Experimental study on diagonally stiffened steel plate shear walls with central perforation", J. Constr. Steel Res., 89, 9-20. https://doi.org/10.1016/j.jcsr.2013.06.005.   DOI
32 Applied Technology Council (1992), "Guidelines for cyclic seismic testing of component of steel structures", Redwood City, CA: ATC-24.
33 ASTM A 370-05, SA 370 (2005), "Test methods and definitions for mechanical testing of steel products", Am. Soc. Test Mater., 1-47.
34 Shen, J., Wen, R. and Akbas, B. (2015), "Mechanisms in two-story X-braced frames", J. Constr. Steel Res, 106, 258-277. https://doi.org/10.1016/j.jcsr.2014.12.014.   DOI
35 Shin, D.H. and Kim, H.J. (2016), "Influential properties of hysteretic energy dissipating devices on collapse capacities of frames", J. Constr. Steel Res., 123, 93-105. https://doi.org/10.1016/j.jcsr.2016.04.022.   DOI
36 Shin, J., Lee, K., Jeong, S.H., Lee, H.S. and Kim, J.K. (2012), "Experimental and analytical studies on buckling-restrained knee bracing systems with channel sections", Int. J. Steel Struct., 12, 93-106. https://doi.org/10.1007/s13296-012-1009-Y.   DOI
37 Vetr, M.G., Riahi Nouri, A. and Kalantari, A. (2016), "Seismic evaluation of rocking structures through performance assessment and fragility analysis", J. Earthq. Eng. Eng. Vib. (EEEV), 15, 115-127. https://doi.org/10.1007/s11803-016-0309-1.   DOI
38 Shokouhian, M., Sadeghi R. and Ozbakkaloglu, T. (2012), "The buckling behaviour of Knee frames (KBF)", Proceedings of the Conference: Australasian Structural Engineering Conference (ASEC).
39 Tremblay, R., Archambault, M.H. and Filiatrault, A. (2003), "Seismic response of concentrically braced steel frames made with rectangular hollow bracing members", J. Struct. Eng., 129, 1626-1636. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:12(1626).   DOI
40 Uange, C.M. (1991), "Establishing R (or Rw) and Cd factors for building seismic provisions", J. Struct. Eng., 117, 19-28. https://doi.org10.1061/(ASCE)0733-9445(1991)117:1(19).   DOI
41 Wang, C.L., Liu, Y. and Wu, J. (2018), "Development of a new partially restrained energy dissipater: Experimental and numerical analyses", J. Constr. Steel Res., 147, 367-379. https://doi.org/10.1016/j.jcsr.2018.04.023.   DOI
42 Wang, C.L., Liu, Y., Zhang, X. and Wu, J. (2019), "Experimental investigation of a precast concrete connection with all-steel bamboo-shaped energy dissipaters", J. Eng. Struct., 178, 298-308. https://doi.org/10.1016/j.engstruct.2018.10.046.   DOI
43 Wongpakdee, N., Leelataviwat, S., Goel, S.C. and Liao, W.C. (2014), "Performance-based design and collapse evaluation of buckling restrained knee braced truss moment frames". J. Eng. Struct., 60, 23-31. https://doi.org/10.1016/j.engstruct.2013.12.014.   DOI
44 Xu, L., Fan, X., Lu, D. and., Li, Z. (2016), "Hysteretic behavior studies of self-centering energy dissipation bracing system", Steel Compos Struct., 20(6), 697-711. http://dx.doi.org/10.12989/scs.2016.20.6.1205.   DOI
45 Xu, L.; Fan, X.W. and Li, Z.X. (2016), "Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace", J. Eng. Struct., 127, 49-61. https://doi.org/10.1016/j.engstruct.2016.08.043.   DOI
46 Xu, L., Fan, X.W. and Li, Z.X. (2017), "Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs". J. Earthq. Eng. Struct. Dyn., 46(7), 1065-1080. https://doi.org/10.1002/eqe.2844.   DOI
47 Ghasemi, J.H. and Haghollahi, A. (2020), "Assessing the seismic behavior of Steel Moment Frames equipped by elliptical brace through incremental dynamic analysis (IDA)", J. Earth. Eng. Eng. Vib. (EEEV), 19(2), 435-449. https://doi.org/10.1007/s11803-020-0572-z.   DOI
48 Gelinas, A., Tremblay, R. and Davaran, A. (2012), "Seismic behavior of steel HSS X-bracing of the conventional construction category", Proceedings of the ASCE/SEI Structures Congress, March 29-31, Chicago, IL.
49 Xu, L.H., Xie, X.S. and Li, Z.X. (2018), "Development and experimental study of a self-centering variable damping energy dissipation brace", J. Eng. Struct., 160, 270-280. https://doi.org/10.1016/j.engstruct.2018.01.051.   DOI
50 Xu, L.H., Xie, X.S. and Li, Z.X. (2018) "A self-centering brace with superior energy dissipation capability: development and experimental study". J. Smart Mater. Struct., 27(9), 1-23. https://doi.org/10.1088/1361-665X/aad5b0.   DOI
51 Xu, L., Li, Z. and Lv, Y. (2014), "Nonlinear seismic damage control of steel frame-steel plate shear wall structures using MR dampers", Eart. Syruct., 7(6), 697-711. https://doi.org/10.12989/eas.2014.7.6.937.   DOI