• 제목/요약/키워드: X-Ray diffraction measurement

검색결과 519건 처리시간 0.027초

Effect of RTA Treatment on $LiNbO_3$ MFS Memory Capacitors

  • Park, Seok-Won;Park, Yu-Shin;Lim, Dong-Gun;Moon, Sang-Il;Kim, Sung-Hoon;Jang, Bum-Sik;Junsin Yi
    • The Korean Journal of Ceramics
    • /
    • 제6권2호
    • /
    • pp.138-142
    • /
    • 2000
  • Thin film $LiNbO_3$MFS (metal-ferroelectric-semiconductor) capacitor showed improved characteristics such as low interface trap density, low interaction with Si substrate, and large remanent polarization. This paper reports ferroelectric $LiNbO_3$thin films grown directly on p-type Si (100) substrates by 13.56 MHz RF magnetron sputtering system for FRAM (ferroelectric random access memory) applications. RTA (rapid thermal anneal) treatment was performed for as-deposited films in an oxygen atmosphere at $600^{\circ}C$ for 60sec. We learned from X-ray diffraction that the RTA treated films were changed from amorphous to poly-crystalline $LiNbO_3$which exhibited (012), (015), (022), and (023) plane. Low temperature film growth and post RTA treatments improved the leakage current of $LiNbO_3$films while keeping other properties almost as same as high substrate temperature grown samples. The leakage current density of $LiNbO_3$films decreased from $10^{-5}$ to $10^{-7}$A/$\textrm{cm}^2$ after RTA treatment. Breakdown electric field of the films exhibited higher than 500 kV/cm. C-V curves showed the clockwise hysteresis which represents ferroelectric switching characteristics. Calculated dielectric constant of thin film $LiNbO_3$illustrated as high as 27.9. From ferroelectric measurement, the remanent polarization and coercive field were achieved as 1.37 $\muC/\textrm{cm}^2$ and 170 kV/cm, respectively.

  • PDF

유기금속화학증착법으로 유리기판 위에 성장된 산화아연 하이브리드 구조의 광학적 전기적 특성 (Optical and Electrical Properties of ZnO Hybrid Structure Grown on Glass Substrate by Metal Organic Chemical Vapor Deposition)

  • 김대식;강병훈;이창민;변동진
    • 한국재료학회지
    • /
    • 제24권10호
    • /
    • pp.543-549
    • /
    • 2014
  • A zinc oxide (ZnO) hybrid structure was successfully fabricated on a glass substrate by metal organic chemical vapor deposition (MOCVD). In-situ growth of a multi-dimensional ZnO hybrid structure was achieved by adjusting the growth temperature to determine the morphologies of either film or nanorods without any catalysts such as Au, Cu, Co, or Sn. The ZnO hybrid structure was composed of one-dimensional (1D) nanorods grown continuously on the two-dimensional (2D) ZnO film. The ZnO film of 2D mode was grown at a relatively low temperature, whereas the ZnO nanorods of 1D mode were grown at a higher temperature. The change of the morphologies of these materials led to improvements of the electrical and optical properties. The ZnO hybrid structure was characterized using various analytical tools. Scanning electron microscopy (SEM) was used to determine the surface morphology of the nanorods, which had grown well on the thin film. The structural characteristics of the polycrystalline ZnO hybrid grown on amorphous glass substrate were investigated by X-ray diffraction (XRD). Hall-effect measurement and a four-point probe were used to characterize the electrical properties. The hybrid structure was shown to be very effective at improving the electrical and the optical properties, decreasing the sheet resistance and the reflectance, and increasing the transmittance via refractive index (RI) engineering. The ZnO hybrid structure grown by MOCVD is very promising for opto-electronic devices as Photoconductive UV Detectors, anti-reflection coatings (ARC), and transparent conductive oxides (TCO).

Ba(Zn1/3Ta2/3)O3 마이크로파 유전체에서 ZrO2와 NiO의 비화학양론적 첨가 (Nonstoichiometric Addition of ZrO2 and NiO to the Ba(Zn1/3Ta2/3)O3 Microwave Dielectrics)

  • 남경덕;강성우;김태희;심수만;최선희;김주선
    • 한국전기전자재료학회논문지
    • /
    • 제24권12호
    • /
    • pp.955-961
    • /
    • 2011
  • We investigated the physical properties of stoichiometric and non-stoichiometric oxide doped complex perovskite, $Ba(Zn_{1/3}Ta_{2/3})O_3$ ceramics and their impacts on the microwave dielectric performances using various characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and network analyzer. According to the measurement of lattice constant changes, anomalous lattice volume contraction of $ZrO_2$ doped $Ba(Zn_{1/3}Ta_{2/3})O_3$ sample only showed the dielectric quality factor enhancements, which was due to the lattice volume contraction as well as the 1:2 B-site cation ordering. In addition, NiO doping was useful to the stabilization of temperature coefficient of resonance frequency.

펄스 레이저 증착법으로 제작된 다강체 $0.7BiFeO_3-0.3BaTiO_3$ 박막의 특성 연구 (Preparation and Characterization of Multiferroic $0.7BiFeO_3-0.3BaTiO_3$ Thin Films by Pulsed Laser Deposition)

  • 김경만;;;조영걸;이희영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.88-88
    • /
    • 2009
  • $BiFeO_3$(BFO), when forming a solid solution with $BaTiO_3$(BTO), shows structural transformations over the entire compositional range, which not only gives a way to increase structural stability and electrical resistivity but also applies a means to have better ferromagnetic ordering. In this respect, we have prepared and studied 0.7BFO-0.3BTO thin films on $Pt(111)/TiO_2/SiO_2/Si$ substrates by pulsed laser deposition. Various deposition parameters, such as deposition temperature and oxygen pressure, have been optimized to get better quality films. Based on the X-ray diffraction results, thin films were successfully deposited at the temperature of $600^{\circ}C$ and an oxygen partial pressure of 10mTorr. The dielectric, ferroelectric, and magnetic properties have then been characterized. It was found that the films deposited under lower oxygen pressure corresponded to lower leakage current. Magnetism measurement showed an induced ferromagnetism. The microstructures associated with. the magnetic and dielectric properties of this mixed-perovskite solid solutions were observed by transmission electron. microscopy, which revealed the existence of complicated ferroelectric domains, suggested that the weak spontaneous magnetization was closely associated with the decrease in the extent of rhombohedral distortion by a partial substitution of $BaTiO_3$ for $BiFeO_3$.

  • PDF

RF magnetron sputtering에 의해 증착된 Indium Zinc Tin Oxide 박막의 전기적, 광학적 특성. (Electrical and optical properties of Indium Zinc Tin Oxide thin films deposited by RF magnetron sputtering)

  • 남태방;최병현;지미정;서한;원주연;주병권
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.96-96
    • /
    • 2009
  • 투명전도막은 FPD의 전자부품에서 전극으로 널리 사용되고 있으며 현재 대부분의 투명전도막으로는 ITO가 사용되고 있다. 하지만, ITO에 사용되는 In은 희유금속으로 지속적인 사용량 증가로 가격의 급등과 더불어 수급 불안정으로 인해 In을 대체하고자 하는 연구가 집중적으로 이루어지고 있다. 그러나 $In_2O_3$를 대체한 ZnO계 등은 비저항이 높아 대체 적용이 가능하지 못하고 있다. 이에 In의 양을 줄이면서 상대적으로 저가이면서 광학적 특성이 우수한 ZnO을 첨가하여 기존의 ITO에 상응하는 전기전도도와 광투과율을 얻을 수 있는 새로운 3성분계 TCO 에 대한 연구가 활발히 이루어지고 있다. 따라서, 본 연구그룹은 $In_2O_3$을 기본 조성으로 하는 $In_2O_3-ZnO-SnO_2$계를 선정하여 IZTO target을 제조 후 RF magnetron sputtering 방법으로 투명전도막을 제작하였다. 본 연구에서는 RF 파워와 동작압력, 동작시간 그리고 열처리온도의 증착 조건에 따른 IZTO 박막의 특성을 평가하였다. 박막의 특성 및 표면 미세구조를 관찰하기 위해 AFM(Atomic Force Microscope)을 이용하였으며, XRD(X-ray diffraction)을 이용하여 결정성을 분석하였고, 4 point-prove, Hall effect measurement와 UV/Visible spectrometer를 통해 전기적, 광학적 특성을 평가하였다.

  • PDF

저 유전상수 폴리머와 SiO$_2$기판위에 형성된 Al/Ti박막의 우선방위 비교 (Comparative Study of Texture of Al/Ti Thin Films Deposited on Low Dielectric Polymer and SiO$_2$Substrates)

  • 유세훈;김영호
    • 마이크로전자및패키징학회지
    • /
    • 제7권2호
    • /
    • pp.37-42
    • /
    • 2000
  • 저유전상수 폴리머와 $SiO_2$위에 형성된 Al/Ti박막의 우선방위에 대해 비교하였다. DC 마그네트론 스퍼터를 이용하여 50 nm 두께의 Ti과 500 nm의 Al-1%Si-0.5%Cu(wt%) 합금 박막을 저유전상수 폴리머와 $SiO_2$기판위에 증착하였다. Al의 우선방위는 XRD $\theta$-2$\theta$와 rocking curve로 측정하였고, Al/Ti박막의 미세조직은 투과전자현미경 (TEM)으로 관찰하였다. 저 유전상수 폴리머 위에 증착된 Al/Ti박막은 $SiO_2$위에 증착된 것보다 낮은 우선방위를 가졌다. 단면 TEM으로 Ti을 관찰한 결과, $SiO_2$위의 Ti의 결정립은 기판에 수직하게 성장하였으나 저유전상수 폴리머 위의 Ti 결정립은 등축정으로 성장하였으며, 저유전상수 폴리머위의 Al/Ti박막이 낮은 우선방위를 갖는 이유는 Ti 미세조직 때문이었다.

  • PDF

전기방사법에 의한 NiZn 페라이트 나노섬유의 제조 및 특성 연구 (Preparation and Characterization of NiZn-Ferrite Nanofibers Fabricated by Electrospinning Process)

  • 주용휘;남중희;조정호;전명표;김병익;고태경
    • 한국세라믹학회지
    • /
    • 제46권1호
    • /
    • pp.74-80
    • /
    • 2009
  • Electrospinning process is the useful and unique method to produce nanofibers from metal precursor and polymer solution by controlled viscosity. In this study, the NiZn ferrite nanofibers were prepared by electrospinning with a aqueous metal salts/polymer solution that contained polyvinyl pyrrolidone and Fe (III) chloride, Ni (II) acetate tetrahydrate and zinc acetate dihydrate in N,N-dimethylformamide. The applied electric field and spurting rate for spinning conditions were 10 kV, 2 ml/h, respectively. The obtained fibers were treated at $250^{\circ}C$ for 1 h to remove the polymer. Finally, the NiZn ferrite fibers were calcined at $600^{\circ}C$ for 3 h and annealed at $900{\sim}1200^{\circ}C$ in air. By tuning the viscosity of batch solution before electrospinning, we were able to control the microstructure of NiZn ferrite fiber in the range of $150{\sim}500\;nm$ at 770 cP. The primary particle size in $600^{\circ}C$ calcined ferrite fiber was about 10 nm. The properties of those NiZn ferrite fibers were determined from X-ray diffraction analysis, electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy, thermal analysis, and magnetic measurement.

광전류 측정으로부터 얻어진 $CdGa_2Se_4$ 에피레이어의 결정장 갈라짐에 대한 에너지 (Crystal field splitting energy for $CdGa_2Se_4$ epilayers obtained by photocurrent measurement)

  • 홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.144-145
    • /
    • 2009
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the poly crystal source of $CdGa_2Se_4$ at $630\;^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CdGa_2Se_4$ thin films measured with Hall effect by van der Pauw method are $8.27\;\times\;10^{17}\;cm^{-3}$, $345\;cm^2/V{\cdot}s$ at 293 K, respectively. The photocurrent and the absorption spectra of $CdGa_2Se_4$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 2.6400 eV - ($7.721\;{\times}\;10^{-4}\;eV/K)T^2$/(T + 399 K). Using the photocurrent spectra and the Hopfield quasi cubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-, and $C_{11}$-exciton peaks.

  • PDF

다양한 온도에서 열처리한 씨앗 층 위에 열수화법을 이용한 ZnO 나노 막대의 성장

  • 배영숙;김영이;김동찬;공보현;안철현;최미경;우창호;한원석;조형균
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.433-433
    • /
    • 2009
  • ZnO-based materials have been extensively studied for optoelectronic applications due to their superiors physical properties such as wide direct bandgap (~3.37 eV), large exciton binding energy (~60 meV), high transparency in the visible region, and low cost. Especially, one-dimensional (1D) ZnO nanostructures have attracted considerable attention owing to quantum confinement effect and high crystalline quality. Additionally, various nanostructures of ZnO such as nanorods, nanowires, nanoflower, and nanotubes have stimulated the interests because of their semiconducting. and piezoelectric properties. Among them, vertically aligned ZnO nanorods can bring the improved performance in various promising photoelectric fields including piezo-nanogenerators, UV lasers, dye sensitized solar cells, and photo-catalysis. In this work, we studied the effect of the annealing temperature of homo seed layers on the formation of ZnO nanorods grown by hydrothermal method. The effect of annealing temperature of seed layer on the length and orientation of the nanorods was investigated scanning electron microscopy investigation. Transmission electron microscopy and X-ray diffraction measurement were performed to understand the effect of annealing temperatures of seed layers on the formation of nanorods. Moreover, the optical properties of the seed layers and the nanorods were studied by room temperature photoluminescence.

  • PDF

갈륨비소-탄소나노튜브 복합체 제작과 전계방출특성 (GaAs-Carbon Nanotubes Nanocomposite: Synthesis and Field-Emission Property)

  • 임현철;찬드라세카;장동미;안세용;정혁;김도진
    • 한국재료학회지
    • /
    • 제20권4호
    • /
    • pp.199-203
    • /
    • 2010
  • Hybridization of semiconductor materials with carbon nanotubes (CNTs) is a recent field of interest in which new nanodevice fabrication and applications are expected. In this work, nanowire type GaAs structures are synthesized on porous single-wall carbon nanotubes (SWCNTs) as templates using the molecular beam epitaxy (MBE) technique. The field emission properties of the as-synthesized products were investigated to suggest their potential applications as cold electron sources, as well. The SWCNT template was synthesized by the arc-discharge method. SWCNT samples were heat-treated at $400^{\circ}C$ under an $N_2/O_2$ atmosphere to remove amorphous carbon. After heat treatment, GaAs was grown on the SWCNT template. The growth conditions of the GaAs in the MBE system were set by changing the growth temperatures from $400^{\circ}C$ to $600^{\circ}C$. The morphology of the GaAs synthesized on the SWCNTs strongly depends on the substrate temperature. Namely, nano-crystalline beads of GaAs are formed on the CNTs under $500^{\circ}C$, while nanowire structures begin to form on the beads above $600^{\circ}C$. The crystal qualities of GaAs and SWCNT were examined by X-ray diffraction and Raman spectra. The field emission properties of the synthesized GaAs nanowires were also investigated and a low turn-on field of $2.0\;V/{\mu}m$ was achieved. But, the turn-on field was increased in the second and third measurements. It is thought that arsenic atoms were evaporated during the measurement of the field emission.