Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.12.955

Nonstoichiometric Addition of ZrO2 and NiO to the Ba(Zn1/3Ta2/3)O3 Microwave Dielectrics  

Nam, Kyung-Deog (High Temperature Energy Materials Research Center, KIST)
Kang, Sung-Woo (The Center of Green Materials Technology, School of Advanced Materials Engineering, Andong National University)
Kim, Tae-Heui (The Center of Green Materials Technology, School of Advanced Materials Engineering, Andong National University)
Sim, Soo-Man (School of Material Science and Engineering, Hongik University)
Choi, Sun-Hee (High Temperature Energy Materials Research Center, KIST)
Kim, Joo-Sun (High Temperature Energy Materials Research Center, KIST)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.12, 2011 , pp. 955-961 More about this Journal
Abstract
We investigated the physical properties of stoichiometric and non-stoichiometric oxide doped complex perovskite, $Ba(Zn_{1/3}Ta_{2/3})O_3$ ceramics and their impacts on the microwave dielectric performances using various characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and network analyzer. According to the measurement of lattice constant changes, anomalous lattice volume contraction of $ZrO_2$ doped $Ba(Zn_{1/3}Ta_{2/3})O_3$ sample only showed the dielectric quality factor enhancements, which was due to the lattice volume contraction as well as the 1:2 B-site cation ordering. In addition, NiO doping was useful to the stabilization of temperature coefficient of resonance frequency.
Keywords
$Ba(Zn_{1/3}Ta_{2/3})O_3$; Microwave Dielectrics; Nonstoichiometric; NiO; $ZrO_2$;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. T. Sebastian, Dielectric materials for wireless communication (Oxford University Press, 2008) p. 275.
2 T. Takahashi, Jpn. J. Appl. Phys., 39, 5637 (2000).   DOI
3 A. Ioachim, M. I. Toacsan, M. G. Banciu, L. Nedelcu, C. A. Dutu, M. Feder, C. Plapcianu, F. Lifei, and P. Nita, J. Eur. Ceram. Soc., 27, 1117 (2007).   DOI
4 C. J. Lee, G. Pezzotti, S. H. Kang, D. J. Kim, and K. S. Hong, J. Eur. Ceram. Soc., 26, 1385 (2006).   DOI
5 S. Nomura, K. Yoyama, and K. Kaneta, Jpn. J. Appl. Phys., 21, L624 (1982).   DOI
6 S. B. Desu and H. M. O'Bryan, J. Am. Ceram. Soc., 68, 546 (1985).   DOI
7 E. Koga, Y. Yamagishi, H. Moriwake, K. Kakimoto, and H. Ohsato, J. Eur. Ceram. Soc., 26, 1961 (2006).   DOI
8 H. Tamura, T. Konoike, Y. Sakabe, and K. Wakino, J. Am. Ceram. Soc., 67, C59 (1984).
9 P. K. Davies and J. Tong, J. Am. Ceram. Soc., 80, 1727 (1997).
10 J. I. Yang, S. Nahm, C. H. Choi, H. J. Lee, and H. M. Park, J. Am. Ceram. Soc., 85, 165 (2002).
11 J. I. Yang, S. Nahm, C. H. Choi, H. J. Lee, J. C. Kim, and H. M. Park, Jpn. J. Appl. Phys., 41, 702 (2002).   DOI
12 M. H. Kim, S. Nahm, W. S. Lee, M. J. Yoo, N. G. Gang and H. J. Lee, J. Eur. Ceram. Soc., 24, 3547 (2004).   DOI
13 M. H. Kim, S. Nahm, W. S. Lee, M. J. Yoo, J. C. Park, and H. J. Lee, Jpn. J. Appl. Phys., 43, 1438 (2004).   DOI
14 S. W. Kang, T. H. Kim, J. H. Moon, S. Y. Kim, J. Y. Park, S. H. Choi, and J. S. Kim, J. Kor. Ceram. Soc., 45, 701 (2008).   DOI
15 S. Kamba, J. Petzelt, E. Buixaderas, D. Haubrich, and P. Vanek, J. Appl. Phys., 89, 3900 (2001).   DOI
16 A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic Press, 1972) p. 156.
17 K. H. Yoon, S. J. Yoo, W. S. Kim, J. B. Kim, and E. S. Kim, Jpn. J. Appl. Phys., 38, 5616 (1999).   DOI