• Title/Summary/Keyword: X-Ray diffraction measurement

Search Result 519, Processing Time 0.029 seconds

Single-Crystal like MgB2 thin films grown on c-cut sapphire substrates

  • Duong, Pham Van;Ranot, Mahipal;Kang, Won Nam
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.7-9
    • /
    • 2014
  • Single-crystal like $MgB_2$ thin film was grown on (000l) $Al_2O_3$ substrate by using hybrid physical-chemical vapor deposition (HPCVD) system. Single crystal properties were studied by X-ray diffraction (XRD) and the full width at half maximum (FWHM) of the (0001) $MgB_2$ peak is $15^{\circ}$, which is very close to that has been reported for $MgB_2$ single-crystal. It indicates that the crystalline quality of thin film is good. Temperature dependence on resistivity was investigated by physical property measurement system (PPMS) in various applied fields from 0 to 9 T. The upper critical field ($H_{c2}$) and irreversibility field ($H_{irr}$) were determined from PPMS data, and the estimated values are comparable with that of $MgB_2$ single-crystals. The thin film shows a high critical temperature ($T_c$) of 40.4 K with a sharp superconducting transition width of 0.2 K, and a high residual resistivity ratio (RRR=21), it reflects that $MgB_2$ thin film has a pure phase structure.

Effect of Process Parameter on Piezoelectric Properties of PZT Thin films (PZT 박막의 압전특성에 미치는 공정변수의 효과)

  • 김동국;지정범
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1060-1064
    • /
    • 2002
  • We have studied the effect of crystallization temperature, composition and film thickness, which are the fundamental processing parameters of lead zirconate titanate(PZT) thin film fabrication, in the respect of the piezoelectric properties by our pneumatic loading method(PLM). A great deal of research has been done in the field of characterization for piezoelectric thin films after the first report on the measurement for the piezoelectric coefficient of thin films in 1990. Even though the piezoelectric properties of thin films are very critical factors in the micro-electro mechanical system(MEMS) and thin film sensor devices, a few reports for the piezoelectric characterization are provided for the last decade unlikely the bulk piezoelectric devices. We have found that the piezoelectric properties of thin films are improved as the increase of crystallization temperature up to 750$\^{C}$ and this behavior can be also explained by the analysis of dielectric polarization hysteresis loop, X-ray diffraction and scanning electron microscopy. The effect of Zr/Ti composition has been also studied. This gives us the fact that the maximum piezoelectricity is found near Morphotropic Phase Boundary(MPB) as bulk PZT system does.

Effect of Li-Incorporation on the Properties of ZnO Thin Films Deposited by Ultrasonic-Assisted Spray Pyrolysis Deposition Method (초음파 분무 열분해법에 의해 성장된 ZnO 박막의 특성에 미치는 Li 첨가의 영향)

  • Han, In Sub;Park, Il-Kyu
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.101-107
    • /
    • 2018
  • Li-incorporated ZnO thin films were deposited by using ultrasonic-assisted spray pyrolysis deposition (SPD) system. To investigate the effect of Li-incorporation on the performance of ZnO thin films, the structural, electrical, and optical properites of the ZnO thin films were analyzed by means of X-ray diffraction (XRD), field-emssion scanning electron microscopy (FE-SEM), Hall effect measurement, and UV-Vis spectrophotometry with variation of the Li concentraion in the ZnO sources. Without incorporation of Li element, the ZnO surface showed large spiral domains. As the Li content increases, the size of spiral domains decreased gradually, and finally formed mixed small grain and one-dimensional nanorod-like structures on the surface. This morphological evolution was explained based on an anti-surfactant effect of Li atoms on the ZnO growth surface. In addition, the Li-incorporation changed the optical and electrical properties of the ZnO thin films by modifying the crystalline defect structures by doping effects.

Comparison of Nitrogen and Oxygen Annealing Effects on the Structural, Optical and Electrical Properties of ALD-ZnO Thin Films (ALD법으로 증착한 ZnO 박막의 열처리 분위기에 따른 구조적, 전기적 특성 비교)

  • Park Y. K.;Park A. N.;Lee C. M.
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.514-517
    • /
    • 2005
  • Effects of nitrogen and oxygen annealing on the carrier concentration, carrier mobility, electrical resistivity and PL characteristics as well as the crystallinity of ZnO films deposited on sapphire substrates by atomic layer deposition (ALD). X-ray diffraction (XRD), Scanning electron microscope (SEM), photoluminescence (PL) analyses, and Hall measurement were performed to investigate the crystallinity, optical properties and electrical properties of the ZnO thin films, respectively. According to the XRD analysis results the crystallinity of the ZnO film annealed in an oxygen atmosphere is better than that of the ZnO film annealed in a nitrogen atmosphere. Annealing undoped ZnO films grown by ALD at a high temperature above $600^{\circ}C$ improves the crystallinity and enhances W emission but deteriorates the electrical conductivity of the flms. The resistivity of the ZnO film annealed particularly at $800^[\circ}C$ in a nitrogen atmosphere is much higher than that annealed at the same temperature in an oxygen atmosphere.

Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications

  • Srivastava, Vibha;Babu, Eadi Sunil;Hong, Soon-Ku
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.399-405
    • /
    • 2020
  • In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ℃ and ~ 50 % at 220 ℃.

DC/RF Magnetron Co-Sputter를 이용하여 성막한 유기 태양 전지용 Si-Doped $In_2O_3$ (ISO) 박막의 특성 연구

  • Lee, Hye-Min;Gang, Sin-Bi;Jeong, Gwon-Beom;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.327-327
    • /
    • 2013
  • 본 연구에서는 $SiO_2$ Target과 $In_2O_3$ Target으로 co-sputtering방법을 이용해 증착한 Si-doped $In_2O_3$ (ISO) 박막의 Si 도핑 농도에 따른 전기적, 광학적, 구조적 특성에 대해 연구하였고, 이를 유기태양 전지(OPVs) 에 적용함으로써 그 가능성을 타진하였다. $In_2O_3$ target의 DC power를 100 W로 고정시킨 채 $SiO_2$ target의 RF power 크기를 20~60 W 변화시키면서 상온에서 실험을 진행한 결과 최적 조건은 박막의 두께가 200 nm일 때 Working pressure는 3 mTorr이고, RF power는 50 W이었다. 이 조건으로 제작된 ISO 박막은 550 nm에서 81.51%의 광투과율과 51.91 Ohm/sq.의 비교적 낮은 면저항이 나타남을 Hall measurement 및 UV/Vis spectroscopy 분석을 통해 알 수 있었다. 또한 X-ray diffraction 분석법과 Transmission Electron Microscope 분석법을 통해 $SiO_2$ 도핑 power가 50 W 이상으로 증가할 경우 ISO 박막의 결정성이 감소하여 완벽한 비정질상의 ISO 투명박막이 형성됨을 확인할 수 있었다. 비정질 특성을 갖는 ISO 투명 전극을 이용하여 유기 박막형 태양전지를 제작한 결과 Voc (0.576 V), Jsc (7.671 mA/$cm^2$), FF (62.96%), PCE (2.78%)의 특성을 나타냄으로서 co-sputtering 공정을 통해 최적화된 ISO 박막을 유기 박막형 태양전지에 적용함으로써 광전소자로의 적용 가능성을 확인할 수 있었다.

  • PDF

전자빔 조사에 따른 Flexible ITO Film의 특성 향상에 대한 연구

  • Hwang, Jin-Ye;Nam, Sang-Hun;Kim, Yong-Hwan;Song, Gi-Mun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.581-581
    • /
    • 2013
  • ITO (Indium Tin oxide)는 비화학 양론적 조성을 띄는 n-type 반도체 특성이 있으며 가시광 영역(380~780 nm)의 파장에 대한 높은 광 투과도(>85%)를 가지며 비교적 높은 전도도(${\sim}10^4/{\Omega}-cm$)를 갖고 화학적 안정성이 우수하여 투명전극 박막으로 많이 사용되어왔다. 또한, PET film은 전기절연성, 내후성이 우수하고, 85%의 투과율을 보이는 특성에 의하여 Flexible display의 기판으로 많은 연구가 진행되고 있다. 이와 같은 PET film에 ITO를 증착하여 광 투과도와 전기전도도가 우수한 Flexible display의 투명전극으로 많은 연구 개발이 이루어지고 있다. Flexible ITO 박막의 특성을 향상하기 위해서는 $200^{\circ}C$ 이상의 열처리 공정이 필요하지만, PET는 약 $200^{\circ}C$ 이상에서 열 변형이 일어나므로 열처리 공정이 어렵고 이러한 문제점을 해결하기 위해 ITO/PET film에서 PET film의 변형 없이 ITO 박막의 표면에 전자빔 형태로 조사하여 박막의 물성을 개선하는 연구가 진행되고 있다 [1]. 본 연구에서는 ITO/$SiO_2$가 증착된 PET film에 전자빔을 조사하여 ITO 박막의 물성 변화를 관찰하였고, 전자빔 에너지 변화 및 전자빔 조사 시간에 따라 ITO film의 전기적, 광학적 특성 변화를 분석하였다. 구조적 특성은 XRD (X-ray diffraction), 전기적 특성은 4-point probe, Hall measurement를 이용하였으며, 가시광영역의 광 투과도는 UV-Vis spectrometer로 측정하였다. 전기 광학적 특성 변화는 Figure of Merit (FOM) 수치로 분석하였다. 이 실험으로 PET film에 직접적인 열을 가하지 않으면서 ITO 박막의 표면에 전자빔을 조사 하여, 박막의 전기전도도 및 광 투과율, 결정성 향상 등을 관찰할 수 있었다.

  • PDF

Synthesis and Characterization of Delafossite $CuLaO_2$ for Thermoelectric Application

  • Takahashi, Yuhsuke;Matsushita, Hiroaki;Katsui, Akinori
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1114-1115
    • /
    • 2006
  • The preparation of single-phase $CuLaO_2$ with delafossite-type structure by means of the solid-state reaction method was investigated using X-ray diffraction. The results showed that notwhistanding the fact that there was a trace of metallic copper, nearly single-phase $CuLaO_2$ was obtained by using $La(OH)_3$ as a lanthanum source and by firing the mixed powder with nonstoichiometric composition ratio of $La(OH)_3:Cu_2O=1:1.425$ in a vacuum at 1273 K for 10 h. The measurement of electrical conductivity and Seebeck coefficient showed that $CuLaO_2$ thus obtained was a p-type semiconductor and had a Seebeck coefficient of approximately $70{\mu}V/K$.

  • PDF

A Synthesis of Spherical Shape $TiO_2-SiO_2$ Complex via Solvothermal Process and Thermal Properties at Non-Isothermal (용매열합성을 이용한 구형 $TiO_2-SiO_2$ 복합체 제조 및 열적특성)

  • Cho Tae-Hwan;Park Seong-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.141-147
    • /
    • 2005
  • Nanomaterial $TiO_2-SiO_2$ was synthesized by hydrolysis and condensation process using 2-propanol(2-PrOH) and was characterized by FT-IR, DSC, XRD and FE-SEM. FT-IR spectra were measured to investigate Ti-0-Si absorption peak. DSC thermal analysis results appllied to Ozawa equation were used to calculate to activation energy of crystallization. It was found that the changes of X-ray diffraction patterns and FWHM obtained XRD measurement depended on calcination temperature. In FE-SEM analysis, particle size changed by quantity changes of Ti-alkokide.

  • PDF

Mesoporous Assembly of Layered Titanate with Well-Dispersed Pt Cocatalyst

  • Jung, Tae-Sung;Kim, Tae-Woo;Hwang, Seong-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.449-453
    • /
    • 2009
  • A mesoporous assembly of layered titanate with well-dispersed Pt cocatalysts has been synthesized via a restacking of exfoliated titanate nanosheets and a simultaneous adsorption of Pt nanoparticles. According to powder X-ray diffraction analysis, the obtained mesoporous assembly shows amorphous structure corresponding to the disordered stacking of layered titanate crystallites. Field emission-scanning electron microscopy and $N_2$ adsorption-desorption isotherm measurement clearly demonstrate the formation of mesoporous structure with expanded surface area due to the house-of-cards type stacking of the titanate crystallites. From high resolution-transmission electron microscopy and elemental mapping analyses, it is found that Pt nanoparticles with the size of ~2.5 nm are homogeneously dispersed in the mesoporous assembly of layered titanate. In comparison with the protonated titanate, the present mesoporous assembly of layered titanate exhibits better photocatalytic activity for the photodegradation of organic molecules. This finding underscores that the restacking of exfoliated nanosheets is quite useful not only in creating mesoporous structure but also in improving the photocatalytic activity of titanium oxide.