• 제목/요약/키워드: X-레이

Search Result 83, Processing Time 0.026 seconds

Numerical analysis of fracture mechanisms for porous calcium phosphate (다공성 칼슘포스파이트에 대한 파괴분석)

  • Park, Jin-Hong;Bae, Ji-Yong;Shin, Jae-Bum;Jeon, In-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1301-1302
    • /
    • 2008
  • In this study, the fracture strength for fracture mechanism porous calcium phosphate made from sintered with ${\beta}$-tricalcium phosphate obtained by wet precipitation procedure is analyzed using finite element method and experiment measurement. First, three $3{\times}3{\times}3mm^3$ and $5{\times}5{\times}5mm^3$ specimens are prepared and tomographic images of one $5{\times}5{\times}5mm^3$ specimen are obtained by micro focus X-ray CT. The compression tests using the specimens are carried out to measure the elastic modulus and fracture strength to analyze the fracture mechanism of porous calcium phosphate specimen. The tomographic images are reconstructed by 3D reconstruction program. The finite elements are directly built up in the reconstructed specimen. The numerical simulation for the compression tests is performed using the element. The mechanism of calcium phosphate of simulation are obtained by the compression tests using there cylindric specimen of height 19.5 mm and diameter 10 mm. From the results, the applicability of porous calcium phosphate is evaluated to care fracture and vacant bone of a patient as the reinforcement material.

  • PDF

Internal Defects Inspection of Die-cast Parts via the Comparison of X-ray CT Image and CAD Data (CAD 데이터 및 엑스레이 CT이미지 비교를 통한 다이캐스팅 부품의 내부 결함 검사방법)

  • Hong, Gyeong Taek;Shim, Jae Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.1
    • /
    • pp.27-34
    • /
    • 2018
  • Industrially, die-casting products are formed through casting, and so the methods to inspect the defects inside them are very restrictive. External inspection methods including visual inspection, sampling judgment, etc. enables researchers to inspect possible external defects, but x-ray inspection equipment has been generally used to inspect internal ones. Recently, they have been also applying three-dimensional internal inspections using CT equipment. However, they have their own limitations in applying to the use of industrial inspection due to limited detection size and long calculation time. To overcome the above problems, this paper has suggested a method to inspect internal defects by comparing the CAD data of the product to be inspected with the 3D data of the CT image. In this paper, we proposed a method for fast and accurate inspection in three dimensions by applying x-ray inspection to find internal defects in industrial parts such as aluminum die casting products. To show the effectiveness of the proposed method, a series of experiments have been carried out.

Human Skeletal X-ray Projection Images Applied Fashion Design (인체 골격의 X-ray 투사 이미지를 활용한 패션디자인)

  • Park, Jungin;Lee, Younhee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.3
    • /
    • pp.13-27
    • /
    • 2015
  • The purpose of this study is to understand the general process from textile design till fashion design and to understand the relation between the body structure by using the x-ray technique. The research method was to see background of the anatomic feature and human skeletal X-ray projection through historical aspect of publications, the Internet, and paper. In terms of production, in order to present a design that takes into account the unique silhouette of the human body without distorting the shape of the human skeleton, X-ray images that were reconstituted using a computer graphic tool (Photoshop CS) were reproduced into the fabric as intense images through the digital Textile Printing technique that is capable of expressing fine and delicate details, and applied into the design. An original design was developed that emphasized the impression of the human body being projected and the shape of the human skeleton realistically expressed in terms of silhouette and detail. The results are as follows: First, Body has a anatomic formative characteristic and its formativeness becomes as a great motive for the artistic expression and thereby it becomes more unique and available for new design expression. Second, Using the 'body frame' as the motive of the research, there's mainly tried to make an unique expression. Third, according to reconstructing human skeletal X-ray projection by using Adobe Photoshop CS2, it can be expressed strong and unique design. Forth, DTP which is being used as an essential technique, expresses the body frame realistically and being used the special type of functional product and silk. Likewise by discovering the diverse formativeness of our body frame and reflecting the sense of humanity into the pieces there's been able to make and develop an unique fashion design. I sincerely hope there is a hug progress in this research in this area.

  • PDF

A Study on Image Resolution Increase According to Sequential Apply Detector Motion Method and Non-Blind Deconvolution for Nondestructive Inspection (비파괴검사를 위한 검출기 이동 방법과 논블라인드 디컨볼루션 순차 적용에 따른 이미지 해상도 증가 연구)

  • Soh, KyoungJae;Kim, ByungSoo;Uhm, Wonyoung;Lee, Deahee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.609-617
    • /
    • 2020
  • Non-destructive inspection using X-rays is used as a method to check the inside of products. In order to accurately inspect, a X-ray image requires a higher spatial resolution. However, the reduction in pixel size of the X-ray detector, which determines the spatial resolution, is time-consuming and expensive. In this regard, a DMM has been proposed to obtain an improved spatial resolution using the same X-ray detector. However, this has a limitation that the motion blur phenomenon, which is a decrease in spatial resolution. In this paper, motion blur was removed by applying Non-Blind Deconvolution to the DMM image, and the increase in spatial resolution was confirmed. DMM and Non-Blind Deconvolution were sequentially applied to X-ray images, confirming 62 % MTF value by an additional 29 % over 33 % of DMM only. In addition, SSIM and PSNR were compared to confirm the similarity to the 1/2 pixel detector image through 0.68 and 33.21 dB, respectively.

Parallel Data Extraction Architecture for High-speed Playback of High-density Optical Disc (고용량 광 디스크의 고속 재생을 위한 병렬 데이터 추출구조)

  • Choi, Goang-Seog
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.3
    • /
    • pp.329-334
    • /
    • 2009
  • When an optical disc is being played. the pick-up converts light to analog signal at first. The analog signal is equalized for removing the inter-symbol interference and then the equalized analog signal is converted into the digital signal for extracting the synchronized data and clock signals. There are a lot of algorithms that minimize the BER in extracting the synchronized data and clock when high. density optical disc like BD is being played in low speed. But if the high-density optical disc is played in high speed, it is difficult to adopt the same extraction algorithm to data PLL and PRML architecture used in low speed application. It is because the signal with more than 800MHz should be processed in those architectures. Generally, in the 0.13-${\mu}m$ CMOS technology, it is necessary to have the high speed analog cores and lots of efforts to layout. In this paper, the parallel data PLL and PRML architecture, which enable to process in BD 8x speed of the maximum speed of the high-density optical disc as the extracting data and clock circuit, is proposed. Test results show that the proposed architecture is well operated without processing error at BD 8x speed.

  • PDF

ZnO Nanostructure Characteristics by VLS Synthesis (VLS 합성법을 이용한 ZnO 나노구조의 특성)

  • Choi, Yuri;Jung, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.617-621
    • /
    • 2009
  • Zinc oxide (ZnO) nanorods were grown on the pre-oxidized silicon substrate with the assistance of Au and the fluorine-doped tin oxide (FTO) based on the catalysts by vapor-liquid-solid (VLS) synthesis. Two types of ZnO powder particle size, 20nm, $20{\mu}m$, were used as a source material, respectively The properties of the nanorods such as morphological characteristics, chemical composition and crystalline properties were examined by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and field-emission scanning electron microscope (FE-SEM). The particle size of ZnO source strongly affected the growth of ZnO nanostructures as well as the crystallographic structure. All the ZnO nanostructures are hexagonal and single crystal in nature. It is found that $1030^{\circ}C$ is a suitable optimum growth temperature and 20 nm is a optimum ZnO powder particle size. Nanorods were fabricated on the FTO deposition with large electronegativity and we found that the electric potential of nanorods rises as the ratio of current rises, there is direct relationship with the catalysts, Therefore, it was considered that Sn can be the alternative material of Au in the formation of ZnO nanostructures.

A Study on the Grindability of New Ceramics (뉴 세라믹스의 연삭성에 관한 연구)

  • Kim, Seong-Kyeum;Kim, Nam-Hoon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.103-108
    • /
    • 2007
  • The number of parts made of ceramic materials has gradually been increasing in field of from mechanical engineering to electronics engineering and, mechanical engineering ceramics have spread because of three very favourable characteristic features of their application, namely, heat, wear, and corrosion resistance. therefore, the elaboration of suitable grinding technologies is Important. grinding is problematic because crack-free ceramics are difficult to process owing to their particular micro structure. In this paper we report on the application of advanced precision grinding process, elaborating continuous wheel dressing. The removal rate can be increased significantly and surface roughness is improved. Various problems(roughness, ground surface etc)encountered in grinding of ceramics are also discussed.

Vibration Analysis of a Cable Supported Wind Turbine Tower Model (케이블 지지된 풍력발전기 타워 구조 모델의 진동해석)

  • Kim, Seock-Hyun;Park, Mu-Yeol;Cui, C.X.
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.47-53
    • /
    • 2007
  • A theoretical model based on Rayleigh-Ritz method is proposed to predict the resonance frequency of a W/T(Wind Turbine) tower structure supported by guy cables. In order to verify the validity of the theoretical model, a reduced W/T tower system is manufactured and tested. Frequency response and mode data are determined by modal testing and finite element analysis is performed to calculate the natural frequency of the tower model. Numerical and experimental results are compared with those by the theoretical analysis. Parametric study by the theoretical model shows how the cable tension and cable elasticity influence the resonance frequency of the W/T tower structure. Finally, vibration response under various rotating speed is investigated to examine the possibility of severe resonance.

  • PDF

Urban Area Building Reconstruction Using High Resolution SAR Image (고해상도 SAR 영상을 이용한 도심지 건물 재구성)

  • Kang, Ah-Reum;Lee, Seung-Kuk;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.4
    • /
    • pp.361-373
    • /
    • 2013
  • The monitoring of urban area, target detection and building reconstruction have been actively studied and investigated since high resolution X-band SAR images could be acquired by airborne and/or satellite SAR systems. This paper describes an efficient approach to reconstruct artificial structures (e.g. apartment, building and house) in urban area using high resolution X-band SAR images. Building footprint was first extracted from 1:25,000 digital topographic map and then a corner line of building was detected by an automatic detecting algorithm. With SAR amplitude images, an initial building height was calculated by the length of layover estimated using KS-test (Kolmogorov-Smirnov test) from the corner line. The interferometric SAR phases were simulated depending on SAR geometry and changable building heights ranging from -10 m to +10 m of the initial building height. With an interferogram from real SAR data set, the simulation results were compared using the method of the phase consistency. One of results can be finally defined as the reconstructed building height. The developed algorithm was applied to repeat-pass TerraSAR-X spotlight mode data set over an apartment complex in Daejeon city, Korea. The final building heights were validated against reference heights extracted from LiDAR DSM, with an RMSE (Root Mean Square Error) of about 1~2m.

X-ray properties measurement of Flat panel Digital X-ray gas detector (평판형 디지털 엑스레이 가스 검출기의 엑스선 특성 측정기술에 관한 연구)

  • Yoon, Min-Seok;Cho, Sung-Ho;Oh, Kyung-Min;Jung, Suk-Hee;Nam, Sang-Hee;Park, Ji-Goon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.17-21
    • /
    • 2009
  • The Recently, large area matrix-addressed image detectors are investigated for X-ray imaging with medical diagnostic and other applications. In this paper, a new flat panel gas detector for diagnostic X-ray imaging is proposed, and its characteristics are investigated. The research of flat panel gas detector is not exist at all. Because of difficulty to inject gas against to atmospheric pressure. So almost gas detector made by chamber shape. We made flat panel sample by display technique. (ex: PDP, Fed, etc.) The experimental measurements, the transparent electrodes, dielectric layer, and the MgO protection layer were formed in front glass. And, the X-ray phosphor layer and address electrodes are formed in the rare glass. The dark current, the x-ray sensitivity and linearity as a function of electric field were measured to investigate the electrical properties. From the results, the stabilized dark current density and the significant x-ray sensitivity were obtained. And the good linearity as a function of exposure dose was showed in wide diagnostic energy range. These results means that the passive matrix-addressed flat panel gas detector can be used for digital x-ray imaging.

  • PDF