• Title/Summary/Keyword: X선 흡수분광

Search Result 40, Processing Time 0.023 seconds

X-ray Absorption Spectroscopy Study on Surface Interaction of Arsenite onto Two-Line Ferrihydrite at pHs 4 and 10 (pH 4와 10에서의 3가 비소와 Two-Line Ferrihydrite의 표면반응에 대한 X선 흡수 분광 연구)

  • Lee, Woo-Chun;Choi, Sun-Hee;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.73-82
    • /
    • 2011
  • X-ray absorption spectroscopy (XAS) study was conducted using arsenite-sorbed two-line ferrihydrite to investigate the mechanism of surface interactions between two-line ferrihydrite and As(III) (arsenite) which are ubiquitous in nature. The two-line ferrihydrite used was synthesized in the laboratory and the study was undertaken at pHs 4 and 10 to compare the difference in mechanisms of surface interaction between acidic and alkaline environments. The effect of arsenite-adsorbed concentrations on surface complexation was investigated at each pH condition as well. From the results of XAS analyses, the structural parameters of arsenite in the EXAFS revealed that the coordination number and distanceof As-O were 3.1~3.3 and 1.74~1.79 ${\AA}$, respectively, which indicate that the unit structure of arsenite complex formed on the surface of two-line ferrihydrite is $AsO_3$. The dominant structures of As(III)-Fe complex were examined to be bidentate binuclear comer-sharing ($^2C$) and the mixture of bidentate mononuclear edge sharing ($^2E$) and $^2C$ appeared as well. At pH 4, arsenite complex showed different structures on the surface of two-line ferrihydrite, depending on the adsorbed concentrations. At pH 10, on the contrary, the surface structures of arsenite complexes were interpreted to be almost identical, irrespective of the adsorbed concentrations of arsenite. Consequently, this microscopic XAS results support the results of macroscopic adsorption experiments in which the surface interaction between arsenite and two-line ferrihydrite is significantly influenced by pH conditions as well as arsenite concentrations.

Soft x-ray Synchrotron Radiation Spectroscopy Study of Molecule-based Nano Bioparticles Containing Fe (철원소를 함유한 분자기반 생체물질 나노입자들의 연 x선 방사광 분광 연구)

  • Lee, Eun-Sook;Kim, D.H.;Hwang, Ji-Hoon;Lee, Ki-Ho;Kang, J.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.4
    • /
    • pp.125-129
    • /
    • 2012
  • By employing soft x-ray absorption spectroscopy (XAS) and soft x-ray magnetic circular dichroism (XMCD), the electronic structures of molecule-based nano bioparticles, such as Helicobacter pylori ferritin (H. pylori ferritin), Heme, $NaM[Fe(CN)_6]{\cdot}H_2O$-type Prussian Blue (M=Co, Ni) analogue, have been investigated. The measured Fe 2p XAS spectra reveal that Fe ions are trivalent ($Fe^{3+}$) in H. pylori ferritins, while they are in the $Fe^{2+}-Fe^{3+}$ mixed-valent states in $NaM[Fe(CN)_6]{\cdot}H_2O$ Prussian Blue analogues (M=Co, Ni). According to the Fe 2p XMCD spectrum of high-state H. pylori ferritin, all the $Fe^{3+}$ ions have the same local symmetry and their magnetic moments are aligned in the same direction. It is also found that the Fe 3d orbitals in $NaM[Fe(CN)_6]{\cdot}H_2O$ have a strong covalent bonding to $(CN)^-$ ligands, but with a very weak bonding to the 2p orbitals of O ligands.

Application of X-ray Absorption Spectroscopy (XAS) in the Field of Stabilization of As and Heavy Metal Contaminated Soil (비소 및 중금속 오염토양 안정화 분야에서의 X선 흡수분광법(XAS) 활용)

  • Lim, Jung Eun;Moon, Deok Hyun;Kim, Kwon-Rae;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.65-74
    • /
    • 2015
  • X-ray absorption fine structure (XAFS) analysis using X-ray absorption spectroscopy is being applied as a state-of-the-art method in a wide range of disciplines. This review article summarizes the overall procedure of XAFS analysis from the preparation of soil samples to the analysis of data in X-ray absorption near edge structure (XANES) region and extended Xray absorption fine structure (EXAFS) region. The previous studies on application of XANES and EXAFS techniques in environmental soil science field are discussed and classified them according to metal(loid)s (As, Cd, Cu, Ni, Pb, and Zn). A significant number of previous studies of XAFS application in the environmental soil science field have focused on the identification of Pb chemical species in soil. Moreover, XANES and EXAFS techniques have been widely used to investigate the contamination source via identification of metal species. Similarly, these techniques were applied to identify the mechanisms of metal stabilization in soil after application of various amendments, phytoremediation, etc.

Local Structure Study of Ni in Ni-Zn Alloy Coating on Steel by X-ray Absorption Spectroscopy (X선 흡수 분광법을 이용한 Ni-Zn 도금 강판에서의 Ni의 국부 구조에 관한 연구)

  • Lee, Do-Hyung
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.202-205
    • /
    • 1998
  • X-ray absorption fine structure spectroscopic studies at the Ni K-edge have been performed for the Ni-Zn alloy coating layer on steel. The Ni-Zn interatomic distances and Debye-Waller factors were determined by fitting the experimental data with the theoretical spectra in the temperature range of 80 to 300K. The average Ni-Zn interatomic distance was found to be $2.557{\AA}$ and the variation of the Ni-Zn interatomic distance with temperature in this range was insignificant. From the comparison of the Ni-Zn interatomic distance with the nearest neighbor distance of pure Zn lattice it has been suggested that there is an apparent contraction around Ni atom.

  • PDF

Chimie Douce Synthesis of Chalcogen-Doped Manganese Oxides (칼코겐이 도핑된 망간 산화물의 저온합성 연구)

  • Hwang, Seong-Ju;Im, Seung-Tae;Park, Dae-Hun;Yun, Yeong-Su
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.315-320
    • /
    • 2006
  • manganese oxides have been prepared by Chimie Douce redox reaction between permanganate and chalcogen element fine powder under acidic condition (pH = 1). According to powder X-ray diffraction analyses, the S- and Se-doped manganese oxides are crystallized with layered birnessite and tunnel-type -MnO2 structures, respectively. On the contrary, Te-doped compound was found to be X-ray amorphous. According to EDS analyses, these compounds contain chalcogen dopants with the ratio of chalcogen/manganese = 4-7%. We have investigated the chemical bonding character of these materials with X-ray absorption spectroscopic (XAS) analysis. Mn K-edge XAS results clearly demonstrated that the manganese ions are stabilized in octahedral symmetry with the mixed oxidation states of +3/+4. On the other hand, according to Se K- and Te L1-edge XAS results, selenium and tellurium elements have the high oxidation states of +6, which is surely due to the oxidation of neutral chalcogen element by the strong oxidant permanganate ion. Taking into account their crystal structures and Mn oxidation states, the obtained manganese oxides are expected to be applicable as electrode materials for lithium secondary batteries.