Browse > Article
http://dx.doi.org/10.4283/JKMS.2012.22.4.125

Soft x-ray Synchrotron Radiation Spectroscopy Study of Molecule-based Nano Bioparticles Containing Fe  

Lee, Eun-Sook (Department of Physics, The Catholic University of Korea)
Kim, D.H. (Department of Physics, The Catholic University of Korea)
Hwang, Ji-Hoon (Department of Physics, The Catholic University of Korea)
Lee, Ki-Ho (Department of Physics, The Catholic University of Korea)
Kang, J.S. (Department of Physics, The Catholic University of Korea)
Abstract
By employing soft x-ray absorption spectroscopy (XAS) and soft x-ray magnetic circular dichroism (XMCD), the electronic structures of molecule-based nano bioparticles, such as Helicobacter pylori ferritin (H. pylori ferritin), Heme, $NaM[Fe(CN)_6]{\cdot}H_2O$-type Prussian Blue (M=Co, Ni) analogue, have been investigated. The measured Fe 2p XAS spectra reveal that Fe ions are trivalent ($Fe^{3+}$) in H. pylori ferritins, while they are in the $Fe^{2+}-Fe^{3+}$ mixed-valent states in $NaM[Fe(CN)_6]{\cdot}H_2O$ Prussian Blue analogues (M=Co, Ni). According to the Fe 2p XMCD spectrum of high-state H. pylori ferritin, all the $Fe^{3+}$ ions have the same local symmetry and their magnetic moments are aligned in the same direction. It is also found that the Fe 3d orbitals in $NaM[Fe(CN)_6]{\cdot}H_2O$ have a strong covalent bonding to $(CN)^-$ ligands, but with a very weak bonding to the 2p orbitals of O ligands.
Keywords
XAS; XMCD; ferritin; prussian blue analogue; heme;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Van Minh, P. Kim Phu, and I.-S. Yang, J. Kor. Phys. Soc. 53, 3559 (2008).   DOI   ScienceOn
2 O.-H. Kwon, S. Kim, D.-H. Hahm, S. Y. Lee, and P. Kim, J. Microbiol. Biotechnol. 19, 604 (2009).
3 T. J. Regan, H. Ohldag, C. Stamm, F. Nolting, J. Luning, J. Stohr, and R. L. White, Phys. Rev. B 64, 214422 (2001).   DOI   ScienceOn
4 J.-Y. Kim, T. Y. Koo, and J.-H. Park, Phys. Rev. Lett. 96, 047205 (2006).   DOI   ScienceOn
5 C. C. dit Moulin, F. Villain, A. Bleuzen, M.-A. Arrio, P. Sainctavit, C. Lomenech, V. Escax, F. Baudelet, E. Dartyge, J.-J. Gallet, and M. Verdaguer, J. Am. Chem. Soc. 122, 6653 (2000).   DOI   ScienceOn
6 E. S. Lee and J.-S. Kang, unpublished data (2012).
7 H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanda-Riba, S. R. Shinde, S. B. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh, Science 303, 661 (2004).   DOI   ScienceOn
8 K. J. Cho, H. J. Shin, J.-H. Lee, K.-J. Kim, S. S. Park, Y. Lee, C. Lee, S. S. Park, and K. H. Kim, J. Mol. Biol. 390, 83 (2009).   DOI   ScienceOn
9 S. Mornet, C. Elissalde, O. Bidault, F. Weill, E. Sellier, O. Nguyen, and M. Maglione, Chem. Mater. 19, 987 (2007).   DOI   ScienceOn
10 D. H. Kim, H. J. Lee, G. Kim, Y. S. Koo, J. H. Jung, H. J. Shin, J.-Y. Kim, and J.-S. Kang, Phys. Rev. B 79, 033402 (2009).   DOI   ScienceOn
11 F. M. F. de Groot, J. C. Fuggle, B. T. Thole, and G. A. Sawatzky, Phys. Rev. B 42, 5459 (1990).   DOI   ScienceOn
12 G. van der Laan and I. W. Kirkman, J. Phys. Condens. Matter 4, 4189 (1992).   DOI   ScienceOn
13 C. T. Chen, Y. U. Idzerda, H.-J. Lin, N. V. Smith, G. Meigs, E. Chaban, G. H. Ho, E. Pellegrin, and F. Sette, Phys. Rev. Lett. 75, 152 (1995).   DOI   ScienceOn
14 J.-S. Kang, J. H. Kim, Y. J. Kim, W. S. Jeon, D.-Y. Jung, S. W. Han, K. H. Kim, K. J. Kim, and B. S. Kim, J. Kor. Phys. Soc. 40, L402 (2002).
15 D. Getteschi, A. Caneschi, L. Pardi, and R. Sessoli, Science 265, 1054 (1994).   DOI   ScienceOn
16 B. Babara and L. Gunther, Phys. World 12, 35 (1999).
17 D. D. Awschalom, J. F. Smyth, G. Grinstein, D. P. DiVincenzo, and D. Loss, Phys. Rev. Lett. 68, 3092 (1992).   DOI   ScienceOn
18 S. Gider, D. D. Awschalom, T. Douglas, S. Mann, and M. Chaparala, Science 268, 77 (1995).   DOI   ScienceOn
19 D. Grosso, C. Boissière, B. Smarsly, T. Brezesinski, N. Pinna, P. A. Albouy, H. Amenitsch, M. Antoniett, and C. Sanchezet, Nat. Mater. 3, 787 (2004).   DOI   ScienceOn