Browse > Article
http://dx.doi.org/10.9727/jmsk.2011.24.2.073

X-ray Absorption Spectroscopy Study on Surface Interaction of Arsenite onto Two-Line Ferrihydrite at pHs 4 and 10  

Lee, Woo-Chun (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
Choi, Sun-Hee (Pohang Accelerator Laboratory (PAL))
Cho, Hyen-Goo (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
Kim, Soon-Oh (Department of Earth and Environmental Sciences and Research Institute of Natural Science, Gyeongsang National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.24, no.2, 2011 , pp. 73-82 More about this Journal
Abstract
X-ray absorption spectroscopy (XAS) study was conducted using arsenite-sorbed two-line ferrihydrite to investigate the mechanism of surface interactions between two-line ferrihydrite and As(III) (arsenite) which are ubiquitous in nature. The two-line ferrihydrite used was synthesized in the laboratory and the study was undertaken at pHs 4 and 10 to compare the difference in mechanisms of surface interaction between acidic and alkaline environments. The effect of arsenite-adsorbed concentrations on surface complexation was investigated at each pH condition as well. From the results of XAS analyses, the structural parameters of arsenite in the EXAFS revealed that the coordination number and distanceof As-O were 3.1~3.3 and 1.74~1.79 ${\AA}$, respectively, which indicate that the unit structure of arsenite complex formed on the surface of two-line ferrihydrite is $AsO_3$. The dominant structures of As(III)-Fe complex were examined to be bidentate binuclear comer-sharing ($^2C$) and the mixture of bidentate mononuclear edge sharing ($^2E$) and $^2C$ appeared as well. At pH 4, arsenite complex showed different structures on the surface of two-line ferrihydrite, depending on the adsorbed concentrations. At pH 10, on the contrary, the surface structures of arsenite complexes were interpreted to be almost identical, irrespective of the adsorbed concentrations of arsenite. Consequently, this microscopic XAS results support the results of macroscopic adsorption experiments in which the surface interaction between arsenite and two-line ferrihydrite is significantly influenced by pH conditions as well as arsenite concentrations.
Keywords
As(III) (arsenite); two-line ferrihydrite; surface complexation; X-ray absorption spectroscopy (XAS);
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Raven, K.P., Jain, A., and Loeppert, R.H. (1998) Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol., 32, 344-349.   DOI   ScienceOn
2 Schwertmann U. and Cornell R.M. (2000) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH Publishers, New York, USA. 103-112.
3 Sherman, D.M. and Randall, S.R. (2003) Surface complexaton of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta, 67, 4223-4230.   DOI   ScienceOn
4 Waychunas, G.A., Rea, B.A., Fuller, C.C., and Davis, J.A. (1993) Surface chemistry of ferrihydrite: Part I. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57, 2251-2269.   DOI   ScienceOn
5 Wilkie, J.A. and Hering, J.G. (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloid Surface A, 107, 97-110.   DOI   ScienceOn
6 Masue, Y., Loeppert, R.H., and Kramer, T.A. (2007) Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum:iron hydroxides. Environ. Sci. Technol., 41, 837-842.   DOI   ScienceOn
7 Morin, G., Ona-Nguema, G., Wang, Y., Menguy, N., Juillot, F., Proux, O., Guyot, F., Calas, G., and Brown Jr., G.E. (2008) Extended x-ray absorption fine structure analysis of arsenite and arsenate adsorption on maghemite. Environ. Sci. Technol. 42, 2361-2366.   DOI   ScienceOn
8 Manning, B.A., Hunt, M.L., Amrhein, C., and Yarmoff, J.A. (2002) Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ. Sci. Technol., 36, 5455-5461.   DOI   ScienceOn
9 Ona-Nguema, G., Morin, G., Juillot, F., Calas, G., and Brown Jr., G.E. (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ. Sci. Technol., 39, 9147-9155.   DOI   ScienceOn
10 Ravel, B. and Newville, M. (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537-541.   DOI   ScienceOn
11 정현수, 이우춘, 조현구, 김순오 (2008) 자철석의 비소에 대한 흡착특성 연구. 한국광물학회지, 21, 425-434.   과학기술학회마을
12 Jung, Y.I., Cho, H.G., Kim, I.S., and Kim, S.O. (2007) Application of zerovalent iron for the removal of arsenic from leachate of tailing. The 60th anniversary of geological society of Korea (Abstracts for the international symposium on global environmental change), Seoul April 12-13, 52p.
13 Jung, Y.I., Lee, W.C., Cho, H.G., Yun, S.T., and Kim, S.O. (2008) Adsorption of arsenic onto two-line ferrihydrite. J. Miner. Soc. Korea, 21, 227-237.   과학기술학회마을
14 Kim, S.O., Jung, Y.I., Cho, H.G. Park, W.J., and Kim, I.S. (2007) Removal of arsenic from leachate of tailing using laboratory-synthesized zerovalent iron. J. Applied and Biological Chemistry, 50, 6-12.
15 Manceau, A. (1995) The mechanism of anion adsorption on iron oxides: Evidence for the bonding of arsenate tetrahedral on free ${Fe(O, OH)}_6$ edges. Geochim. Cosmochim. Acta, 59, 3647-3653.   DOI   ScienceOn
16 정영일, 이우춘, 조현구, 윤성택, 김순오 (2008) 비소의 two-line ferrihydrite에 대한 흡착반응. 한국광물학회지, 21, 227-237.   과학기술학회마을
17 Fuller, C.C., Davis, J.A., and Waychunas, G.A. (1993) Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim. Cosmochim. Acta, 57, 2271-2282.   DOI   ScienceOn
18 Ankudinov, A.L., Ravel, B., Rehr, J.J., and Conradson, S.D. (1998) Real space multiple scattering calculation and interpretation of X-ray absorption near edge structure. Phys. Rev. B., 58, 7565-7576.   DOI   ScienceOn
19 Dixit, S. and Hering, J.G. (2003) Comparison of arsenic (V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol., 37, 4182-4189.   DOI   ScienceOn
20 Farquhar, M.L., Charnock, J.M., Livens, F.R., and Vaughan, D.J. (2002) Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawitee, and pyrite: An X-ray absorption spectroscopy study. Environ. Sci. Technol. 36, 1757-1762.   DOI   ScienceOn
21 고일원, 이상우, 김주용, 김경웅, 이철효 (2004) 나노 크기 적철석 입자 피복 모래를 이용한 비소 3가와 비소 5가의 제거. 지하수토양환경, 9, 63-69.
22 고일원 김주용, 김경웅, 안주성 (2005) 비소의 적철석 표면 흡착에 토양 유기물이 미치는 영향: 화학종 모델링 과 흡착 기작. 자원환경지질, 38, 23-31.
23 김순오, 정영일, 조현구, 최선희, 이현휘 (2007) 비소와 영가철 및 철(수)산화물과의 표면반응에 대한 X선 흡 수분광 예비연구. 2007년 한국광물학회․한국암석학 회 공동학술발표회(초록), 안동대학교 5월 31일, 131-134.
24 정영일, 김순오, 김인선, 조현구 (2007) Long-term evaluation of the feasibility of zerovalent iron for the removal of arsenic and heavy metals from tailingleachate. 2007년 춘계 지질과학기술 공동학술대회(초록), 경주 4월 25일, 382-384.
25 김순오, 이우춘, 정현수, 조현구 (2009) 침철석(goethite)과 비소의 흡착반응. 한국광물학회지, 22, 177-189.   과학기술학회마을
26 이우춘, 정현수, 김주용, 김순오 (2009) 레피도크로사이트(lepidocrocite) 표면의 비소 흡착 특성 규명. 자원환경지질, 42, 95-105.
27 정영일, 김인선, 김순오 (2006) 영가철을 이용한 광미 용출액으로부터 비소 제거에 관한 연구. 2006년 대한지질학회 추계학술회(초록), 한국지질자원연구원 10월 26일, 149
28 고경석, 오인숙, 김재곤, 안주성, 김형수, 석희준 (2006) 황산염처리 산화철피복모래의 비소 흡착능 평가 연구. 2006년 자원환경지질학회 춘계 학술발표회(초록), 제주도 4월 19일, 445-448.