• Title/Summary/Keyword: Woven-geotextile

Search Result 47, Processing Time 0.019 seconds

Stress and strain behavior investigation on a scale model geotextile tube for Saemangeum dike project

  • Kim, Hyeong-Joo;Lee, Kwang-Hyung;Jo, Sung-Kyeong;Jamin, Jay C.
    • Ocean Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.309-325
    • /
    • 2014
  • Geotextile tubes are basically a huge sack filled with sand or dredged soil. Geotextile tubes are made of permeable woven or non-woven synthetic fibers (i.e., polyester or PET and polypropylene or PP). The geotextile tubes' performances in strength, dewatering, retaining solid particles and stacked stability have been studied extensively in the past. However, only little research has been done in the observation of the deformation behavior of geotextile tubes. In this paper, a large-scale apparatus for geotextile tube experiment is introduced. The apparatus is equipped with a slurry mixing station, pumping and delivery station, an observation station and a data station. For this study the large-scale apparatus was utilized in the studies regarding the stresses on the geotextile and the deformation behavior of the geotextile tube. Model tests were conducted using a custom-made woven geotextile tubes. Load cells placed at the inner belly of the geotextile tube to monitor the total soil pressure. Strain gauges were also placed on the outer skin of the tube to measure the geotextile strain. The pressure and strain sensors are attached to a data logger that sends the collected data to a desktop computer. The experiment results showed that the maximum geotextile strain occurs at the sides of the tube and the soil pressure distribution varies at each geotextile tube section.

Interface Shear Strength Between Soil and Woven Geotextile (흙-직포간의 접촉면 전단강도 산정)

  • Youn, Choo-Moon;An, Hyun-Ho;Seo, Byoung-Wook;Lee, Seok-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.25-30
    • /
    • 2006
  • Large-scale direct shear tests were conducted in order to evaluate both the shear strength of soil itself and the interface shear strength between soil and woven geotextile. Two types of soil (sand and clay) with a woven geotextile were used in the experimental program. Total nine tests were conducted in this study. It has been found from the experimental results that the friction angle of sand itself were $30^{\circ}$. Interface friction angle between woven geotextile and sand showed $26^{\circ}$ indicating an efficiency of 87%. Similarly, interface friction angle between woven geotextile and clay showed $7.7^{\circ}$.

  • PDF

Friction Behavior at the Soil/Geosynthetic Interface in Respect of Efficiency (효율관점에서 흙/토목섬유 접촉면에서의 마찰특성)

  • Ahn, Hyun-Ho;Shim, Seong-Hyeon;Shim, Jai-Beom;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.65-72
    • /
    • 2007
  • Large-scale direct shear tests were conducted in order to investigate both the shear strength of soil itself and the friction behavior at the interface of soil/geosynthetics in respect of efficiency in this study. Sand, crushed stone and three types of geotextile (i.e. one woven geotextile and two nonwoven geotextiles) were used in the experimental program. The considered interfaces for the evaluation of interface shear strength in this study included sand/sand, crushed stone/crushed stone, sand/woven geotextile, crushed stone/woven geotextile, crushed stone/nonwoven geotextile-A and crushed stone/nonwoven geotextile-B. The results showed that the efficiency of 84% was obtained at the interface of sand/woven geotextile compared with the shear strength of sand itself (i.e. sand/sand interface). The efficiencies of 74%, 83% and 72% were obtained at the interface of crushed stone/nonwoven geotextile-A, crushed stone/nonwoven geotextile-B and crushed stone/woven geotextile, respectively compared with the shear strength of crushed stone itself (i.e. crushed stone/crushed stone interface).

A Study on the Reinforcement Effects of Decomposed Granite Soils according to the Spacing Intensity of Non-woven Geotextile (부직포 배치간격에 따른 화강풍화토의 보강효과에 관한 연구)

  • Cho, Yong-Sung;Lee, Myung-Ho;Kim, Kyeong-Shin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • In this study, the deformation and strength characteristics for non-woven geotextile-reinforced decomposed granite soil on the triaxial compression test under the same condition as the underground. The specimen of reinforced earth was made of the decomposed granite soil imbedded horizontal in a given space with non-woven geotextile. Four different type of specimen was used in this experimental programme; UR for unreinforced, R-1 for a single non-woven geotextile sheet, R-2 for two sheets, and R-3 for three sheets. According to the testing results, it was found that the strength of the reinforced soil increased when the non-woven geotextile sheets were more used. These results would be applied to the design of reinforced earth structure through the theoretical interpretation method.

  • PDF

Consolidation Analysis of Geotextile Tubes Filled with Highly Compressible Sludge Using Variable Coefficients of Consolidation

  • Kim, Hyeongjoo;Kim, Hyeongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.25-32
    • /
    • 2021
  • Geotextile tube technology has been perceived as an economical solution for liquid sludge treatment, and analyzing its consolidation behavior is necessary to be able to evaluate the dewatering capabilities of large geotextile tubes filled with contaminated soil, tailings, sewage sludge, and so on. The objectives of this study are to present a method that can adequately convey the consolidation behavior of geotextile tubes filled with sewage sludge, and to investigate the effects of various geotextile tube consolidation parameters. In this study, variable coefficients of consolidation are utilized to analyze the consolidation process of geotextile tubes filled with sewage sludge. The consolidation solution was verified by comparing the measured and predicted data from a hanging bag test conducted in the literature. After verifying the proposed solution, the consolidation parameters of a geotextile tube composed of a woven polypropylene outer layer and a non-woven polypropylene layer filled sewage sludge were obtained. Using the obtained parameters, the consolidation behavior of a large-scale composite geotextiles tube was predicted.

Behavior Analysis from the Site Monitoring Results of Geotextile Reinforced Wall (지오텍스타일 보강토벽의 계측결과에 의한 거동분석)

  • 원명수;이재열;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.145-152
    • /
    • 1999
  • In the applying of the reinforced soil method, it would be possible to obtain reinforcement effect more than before in terms of economic if high water content clayey soils could be used as embanking material. Futhermore it would be possible to expect the expansion of the applying field of reinforced soil method too. In this study, the authors describe the analysis results on the behavior of 5 meter high walls reinforced with nonwoven geotextile having the permeability and woven geotextile or geogrid having large tensile strength on the soil ground. The behavior of the walls were investigated for about 100 days after construction and the deformations of reinforcements, lateral soil pressures, vertical and horizontal displacements of the walls were examined by automatical measuring system. It was found that this kinds of reinforcing system might effectively improve the performance of the steep walls by virtue of the reciprocal action between soil and reinforcements, and it might be concluded that construction of the clayey reinforced soil walls with three kinds of geotextiles could be done successfully even on the comparative weak ground.

  • PDF

Effect of Non-Woven Geotextile Reinforcement on Mechanical Behavior of Sand (모래의 역학적 거동에 미치는 부직포 보강재의 효과)

  • Kim, You-Seong;Oh, Su-Whan;Cho, Dae-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.39-45
    • /
    • 2010
  • The effects of non-woven geotextiles on mechanical behavior of sand were investigated. A comprehensive series of triaxial compression tests were performed for these investigation on unreinforced and reinforced sand with geotextiles. The Joomunjin standard sand was used and non-woven geotextiles were included into sand specimen with three layers. The inclusion of non-woven geotextile reinforcement into sand increased the peak strength of sand significantly and the reinforced samples exhibited a greater axial strain at failure. Also the effect on number of reinforcement layers was studied and found as increasing the number of reinforcement layers resulting in more ductility by clogging developed in the shear band within the specimens. It was also found that the tendency of samples to dilate is restricted by non-woven geotextile inclusion. The effect of nunber of reinforcement layer increasing is just same to the effect of decreasing void ratio of sand in this case.

  • PDF

Assesment of Weather ability of Polyester/Polypropylene Geotextile Composites (폴리에스테르/폴리프로필렌 복합형 지오텍스타일의 내후성 평가)

  • 전한용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.39-55
    • /
    • 1999
  • Geotextile composites to improve the weather ability were composed of recycled polyester geotextile with carbon black as ultraviolet stabilizer and polypropylene geotextile by needle-punching method, and evaluated physical properties, ultraviolet resistance and chemical stability. Retention ratio of tensile properties of non woven polypropylene geotextiles were decreased about 50% by the exposed condition with ultraviolet but those of geotextile composites were slightly decreased than polypropylene geotextiles. Geotextile composites which have larger weights of polyester geotextile were more stable against ultraviolet. For chemical stability, the changes of tensile properties of geotextile composites were in the range of -20~+10% at the various chemical conditions.

  • PDF

Measurement of Nonwoven Geotextile Deformation with Strain Gauges (스트레인 게이지를 이용한 부직포의 변형거동 계측)

  • Won, Myoung-Soo;Lee, Yong-An;Ko, Hyoung-Woo;Kim, You-Seong;Park, Byung-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.96-102
    • /
    • 2006
  • Because of the increasing need to use clayey soil as the backfill in reinforced soil structures and embankment material, nonwoven geotextiles with the drain capability have been receiving much attention. However, there are few studies of the deformation behavior of nonwoven geotextiles at geosynthetics reinforced soil structures in the field because the nonwoven geotextile, which has low tensile stiffness and higher deformability than geogrids and woven geotextiles, is difficult to measure its deformation by strain gauges and to prevent the water from infiltrating. This study proposes a new, more convenient method to measure the deformation behaviour of nonwoven geotextile by using a strain gauge; and examines the availability of the method by conducting laboratory tests and by applying it on two geosynthetics reinforced soil (GRS) walls in the field. A wide-width tensile test conducted under confining pressure of 7kPa showed that the local deformation of nonwoven geotextile measured with strain gauges has a similar pattern to the total deformation measured with LVDT. In the field GRS walls, nonwoven geotextile showed a larger deformation range than the woven geotextile and geogrid; however, the deformation patterns of these three reinforcement materials were similar. The function of strain gauges attached to nonwoven geotextile in the walls works normally for 16 months. Therefore, the method proposed in this study for measuring nonwoven geotextile deformation by using a strain gauge proved useful.

  • PDF

A Study on Thermally Bonded Geotextile Separator and Properties of Waste Landfill Application of PVA Geotextile/HDPE Geomembrane Composites

  • Min, Kyung-Ho;Seo, Jung-Min;Hwang, Beong-Bok;Lee, In-Chul;Ruchiranga, Jayasekara Vishara;Jeon, Han-Yong;Jang, Dong-Hwan;Lim, Joong-Yeon
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.235-246
    • /
    • 2008
  • This paper is concerned with geotextiles bonded chemically with geogrid to form a geocomposite. Geotextiles, thermally bonded and non-woven, play an important role as a separator. Also, this study investigates the resistance to the application environment of geotextile composites. Here, numerous tests have been performed and it was revealed from experimental results that thermally bonded geotextile in geosynthetic composites showed superior characteristics to that manufactured from needle punched non-woven method in terms of tensile strength, tensile strain and high separation performance. It was noted from experiments that the geotextile prepared for separation purpose and manufactured in a thermal bonding method showed relatively low permittivity so that it could be used as a smooth separator. In addition, PVA geotextile/HDPE geomembrane composites were designed and manufactured to investigate the waste landfill related properties. Numerous experiments have been performed and experimental results were summarized to evaluate practical applicability of PVA geotextile/HDPE geomembrane composites. Among the properties of proposed geomembrane composites, evaluation has been focused on the investigation of mechanical properties, AOS (apparent opening size), permittivity and ultraviolet stability.