• Title/Summary/Keyword: Woven geotextile

Search Result 47, Processing Time 0.024 seconds

Evaluation of Reliability of Strain Gauge Measurements for Geosynthetics (토목섬유 보강재에 적용한 스트레인게이지 실측값의 신뢰성 평가)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Li, Zhuang;Kim, Uk-Gie
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.4
    • /
    • pp.87-96
    • /
    • 2015
  • Geosynthetics are widely used in different ways such as reinforcement of structures in road, railway, harbor and dam engineering, drainage, separation and erosion prevention. They are especially applied to reinforced retaining wall and slope or ground reinforcement. Recently, geosynthetics reinforced pile supported (GRPS) embankment was developed to improve stability and construability of embankments in railway engineering. Extension strains are usually measured by strain gauges adhered to geosynthetics to evaluate the stability of geosynthetics. However, the measurements are influenced by manufacturing method and stiffness of geosynthetics and also adherence of strain gauge. In this study, wide-width tensile strength tests were performed on three types of geosynthetics including geogrid, woven geotextile and non-woven geotextile. During the test, strains of geosynthetics were measured by both video extensometer and strain gauges adhered to the geosynthetics and the measured results were compared. Results show that the measured results by strain gauges have high reliability in case of large stiffness geosythetics like geogrid and woven geotextile, whereas they have very low reliability for small stiffness geosythetics like non-woven geotextile.

Analysis of Long-Term Deformation Behaviors of Geocomposites for Reinforcement (보강용 지오컴포지트의 장기변형거동 해석)

  • Jeon, Han Yong;Heo, Dai Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • Geocomposite mechanically bonded with woven type geotextile and nonwoven geotextile was used to examine to the long-term creep deformation behaviors by the SIM(Stepped Isothermal Method). The temperature steps were $26^{\circ}C$, $40^{\circ}C$, $54^{\circ}C$, $68^{\circ}C$, $82^{\circ}C$ and loading levels were 40%, 50%, 60% of designed strength for stepped isothermal method. Results of creep tests are showing that their strain were lower than 10% during 10,000 hours(GRI GS 10). Also, the effect of weft injection density to the creep deformation behaviors were examined. The weft densities of 0%, 50%, 100% of the original weft density showed the creep strain within 10% and the creep strain was increased with the decrease of weft injection density.

  • PDF

An Analysis of the Internal Deformation Behaviors of Geosynthetic Reinforced Soil Walls used Clayey Soil as Backfills (뒤채움재로 점성토를 사용한 보강토벽의 내적 거동 분석)

  • Kim, Heung-Ki;Kim, You-Seong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.2
    • /
    • pp.39-49
    • /
    • 2005
  • In this study, the fifteen month behavior of two geosynthetic reinforced walls which was constructed on the shallow weak ground was measured and analyzed. The walls were backfilled with clayey soil obtained from the construction site nearby, and the safety factors obtained from general limit equilibrium analysis were less than 1.3 in both wall. The measured and analyzed data were horizontal earth pressures, strain of reinforcements, and excess pore water pressures. The used reinforcements were nonwoven geotextile, woven geotextile and geogrid. Although the length of reinforcement was only 30% of wall height and the safety factors of the walls were less than 1.3, the walls were constructed without any problems on the such weak ground. The analysis results showed that the maximum strain of reinforcements were negligible and the strain was between 2.3 and 6.0% according to tensile characteristic of the reinforcements. The excess pore water pressure was not changed due to the rainfall and the horizontal earth pressures in upper and lower part of the walls were larger than the active and the rest pressure.

  • PDF

Weatherability and Reduction Factor of Geosynthetics under Outdoor Exposure Condition

  • Jeon, Han-Yong;Joo, Yong-Su;Lee, Su-Nam;An, Yang-Nim
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.106-106
    • /
    • 2003
  • 6 woven geotextiles for reinforcement were used to examine the effects of weatherability and reduction factor on the tensile properties. Decrease of tensile strength as the tool of these evaluations of woven geotextile was examined.

  • PDF

Permeability Reduction of Geotextile Filters Induced by Clogging (폐색으로 인한 부직포의 투수능 저하 현상)

  • ;;Lakshmi N. Reddi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.481-488
    • /
    • 2000
  • The mechanism of soil-geotextile system has been studied among researchers since the application of geotextile as a replacement of graded granular filters is rapidly growing. The interaction of soils with geotextile is rather complicated so that its design criteria are mostly based on empiricism. Hence, it is essential to study the characteristics of fine particles transport into geotextile induced by the groundwater flow In this study, the permeability reduction in the soil-filter system due to clogging phenomenon is evaluated. An extensive research program is performed using two typical weathered residual soils which are sampled at Shinnae-dong and Poi-dong area in Seoul. Two separate simulation tests with weathered residual soil are peformed: the one is the filtration test(cross-plane flow test): and the other is the drainage test(in-plane flow test). Needle punched non-woven geotextiles are selected since it is often used as a drainage material in the field. The compatibility of the soil-filter system is investigated with emphasis on the clogging phenomenon. The hydraulic behaviour of the soil-filter system is evaluated by changing several testing conditions.

  • PDF

Studie8 on Long-Term Performance Evaluation of Geotextiles -for Filter and Drainage- (필터 및 배수용 토목섬유의 장기적 성능 평가에 관한 연구)

  • 권우남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.130-139
    • /
    • 1993
  • In order to evaluate the long-term permeability performace of the geotextiles, for five different combination of geotextiles and soils the long-term column test method The results obtained are as follows; 1.The gradient range of the initial stage of the long-term permeability curves varied with respect to the soil types, while that of the final stage varied according to the interaction of the soil/geotextile system. 2.The time required for a given soil/geotextile system to reach a interactive stable stage was measured ahout 100 hours for the standard sand and 150 to 600 hours for the silty content soils, respectively. 3.There were no differences between the plain woven geotextile and the non-geotextile in the long-term permeability performance. 4.As the silt content increased, the long-term performance of the geotextiles decreased, and the limiting silt content was about 15%. 5.The thickness and area density of the geotextiles did not influence on the variation of the seepage quantities. 6.The ayerage slope and the transition time of the long-time flow curve were calculated. 7.In order to evaluate the mechanism of soil/geotextile system more perfectly, the gradient ratio test or the hydraulic conductivity test is required.

  • PDF

Characteristics of Settlement for Non-woven Geotextile through Cyclic Loading Model Test (원형토조 시험을 통한 반복하중에 따른 부직포의 침하특성)

  • Choi, Chan-Yong;Lee, Jin-Wook;Kim, Hyun-Ki
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.2
    • /
    • pp.47-54
    • /
    • 2009
  • The ballast track, the most common type of conventional railroad track in Korea, is deteriorated by abrasion of ballast, it's penetration into roadbed, and rugged surface of roadbed caused by cyclic loading of train. Persistent occurrence of those phenomena lead to insufficient drain capacity, one of major factors in track design, and it increases pore water pressure and decreases of shear strength under rainfall condition leading to unstable roadbed. In this study, cylindrical model tests are executed for 3 types of geotextile applying cyclic loading in order to observe the characteristics of displacement and bearing capacity of geotextile, and undrained condition has been applied for 0 day, 3 days and 7 days to each geotextiles. The results showed that there was about 1% difference at the final displacement rates between reinforced soils and nature soils and the displacement of the ground surface increases along with the degrees of the saturation. And in case that water contents exceeds the threshold, it is also apparent that weight and tensile strength of geotextile influences displacement of the ground surface. And the larger weight of geotextile is, the smaller plastic displacement. It is evaluated that non-woven fabric comes into effect on reducing the bearing capacity but, the weight of geotextile has little influence on it.

  • PDF

Evaluation of Filter Capacity for Sea Dyke Slope Filter Layer by In-situ Rainfall Test (현장 강우재현시험을 통한 방조제 사면필터층의 필터성능분석)

  • Oh, Young-In;Kim, Seo-Ryong;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.828-837
    • /
    • 2006
  • Geotextiles consist of three major types of geosynthetic material (woven, non-woven and composite) and the functions of geotextiles are separation, reinforcement, filtration, drainage and as a moisture barrier. Although the many research scholar and engineer developed and established the design criteria and construction methodology, sustainable research still needed for optimum design methodology to the complicate field conditions. In this study, in-situ rainfall test performed to develop suitable filter system for sea dyke upper slope filter layer. In-situ rainfall test conducted for seven different filter system and measured the infiltration flux and pore pressure at various filter layer. Based on the test results, the double layered geotextile filter and sand transition system is most suitable for sea dyke upper filter layer because which system is effective for drainage of infiltration flow and minimize the deformation of sea dyke cover stone.

  • PDF

Laboratory Assessment of Geotextile Tube for Dewatering High Water Content Material (고함수비물질의 탈수에 대한 지오텍스타일 튜브의 실험적 평가)

  • Mo, Xinghua;Kim Tae-Hyung;Moo-Young. Horace K
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.261-269
    • /
    • 2002
  • The objectives of this paper are to study the use of geotextile tribes for dewatering high water content sludges and sediments and to evaluate their feasibility and affecting fsctors. To accomplish these objectives, pressure filtration tests were conducted on woven geotextile (Geotex$\circledR$ 46T and 1212T) fir high water content materials with a modified experimental apparatus. Test results indicate that 1) the filter cake formed on the inside of the geotextile tube is the major contributor to the retention of fine particles, but also causes a decrease in permeability, 2) controlling the formation of the filter cake and thus achieving a balance between soil retention and permeability is vital to a successful project, and 3) geotextiles, sludge properties, and filtration pressures have some effects on the dewatering efficiency and dewatering rate.

Characteristics of Reinforced Drainage Geotextile for Waste Treatment System (폐기물매립지용 보강형배수재의 배수특성에 관한 연구)

  • Jeong, Ji-Hoon;Lee, Jai-Young;Lee, Myung-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • The settlement occurring during landfill construction often causes a damage of drainage system. Clogging can reduce the hydraulic conductivity of the Leachate Collection and Drainage System, which results in the increase of leachate level within the landfill. Consequently, the insulation ability of leachate will be decreased. The main purpose of this project is to estimate a newly designed reinforced drainage geotextile (RDG) combining non-woven fabrics with geogrid for minimizing the destruction of drainage layer as well as evaluating RDG's application in the leachate collection and drainage system. Thus, the project observed the permittivity changes of RDG, and evaluated the drainage ability using RDG in the leachate collection and drainage system.

  • PDF