• Title/Summary/Keyword: Wound Healing

Search Result 1,273, Processing Time 0.025 seconds

Arsenic Trioxide Inhibits Cell Growth and Invasion via Down-Regulation of Skp2 in Pancreatic Cancer Cells

  • Gao, Jian-Kun;Wang, Li-Xia;Long, Bo;Ye, Xian-Tao;Su, Jing-Na;Yin, Xu-Yuan;Zhou, Xiu-Xia;Wang, Zhi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3805-3810
    • /
    • 2015
  • Arsenic trioxide (ATO) has been found to exert anti-cancer activity in various human malignancies. However, the molecular mechanisms by which ATO inhibits tumorigenesis are not fully elucidated. In the current study, we explored the molecular basis of ATO-mediated tumor growth inhibition in pancreatic cancer cells. We used multiple approaches such as MTT assay, wound healing assay, Transwell invasion assay, annexin V-FITC, cell cycle analysis, RT-PCR and Western blotting to achieve our goal. We found that ATO treatment effectively caused cell growth inhibition, suppressed clonogenic potential and induced G2-M cell cycle arrest and apoptosis in pancreatic cancer cells. Moreover, we observed a significant down-regulation of Skp2 after treatment with ATO. Furthermore, we revealed that ATO regulated Skp2 downstream genes such as FOXO1 and p53. These findings demonstrate that inhibition of Skp2 could be a novel strategy for the treatment of pancreatic cancer by ATO.

Berberine Hydrochloride Impact on Physiological Processes and Modulation of Twist Levels in Nasopharyngeal Carcinoma CNE-1 Cells

  • Li, Cai-Hong;Wu, Dong-Fang;Ding, Hang;Zhao, Yang;Zhou, Ke-Yuan;Xu, De-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1851-1857
    • /
    • 2014
  • Objective: The main purpose of this work was to investigate the effect of berberine hydrochloride (BH) on the proliferation, apoptosis, migration, and invasion of CNE-1 nasopharyngeal carcinoma cells. Our results shed light on the functional components of traditional Chinese herbs for potential use in modern medicine. Methods: The CNE-1 cell line was treated with different concentrations of BH and effects on cell viability and proliferation were evaluated using the Cell Counting Kit-8 (CCK-8) assay. Anti-migratory and anti-invasive actions of BH were investigated using wound healing assays and the Millicell Hanging cell culture insert system, respectively. Expression of the epithelial-mesenchymal transition (EMT)-related gene twist (Twist) was analyzed by real-time PCR and Western blotting. Apoptosis was estimated with an annexin-V fluorescein (FITC) apoptosis detection kit, as well as with reference to levels of activated caspase-3 of CNE-1 cells before and after treatment with BH utilizing fluorescence spectroscopy. Results: BH was capable of reducing proliferation and viability of CNE-1 cells in a dose- and time-dependent manner, also demonstrating anti-migratory and anti-invasive capacities which correlated with reduction in expression of Twist. Finally, BH was able to induce significant amounts of apoptosis in CNE-1 cells, as demonstrated by an increase in the activity of caspase-3 and in annexin-V staining following treatment. Conclusion: BH extracted from rhizoma coptidis demonstrated an ability to block proliferation, induce apoptosis, and impair the migration and invasion of the CNE-1 cell line Considering these properties, our results suggest that BH could be an important compound for consideration in the treatment of nasopharyngeal carcinoma.

Screening for Metastatic Osteosarcoma Biomarkers with a DNA Microarray

  • Diao, Chun-Yu;Guo, Hong-Bing;Ouyang, Yu-Rong;Zhang, Han-Cong;Liu, Li-Hong;Bu, Jie;Wang, Zhi-Hua;Xiao, Tao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1817-1822
    • /
    • 2014
  • Objective: The aim of this study was to screen for possible biomarkers of metastatic osteosarcoma (OS) using a DNA microarray. Methods: We downloaded the gene expression profile GSE49003 from Gene Expression Omnibus database, which included 6 gene chips from metastatic and 6 from non-metastatic OS patients. The R package was used to screen and identify differentially expressed genes (DEGs) between metastatic and non-metastatic OS patients. Then we compared the expression of DEGs in the two groups and sub-grouped into up-regulated and down-regulated, followed by functional enrichment analysis using the DAVID system. Subsequently, we constructed an miRNA-DEG regulatory network with the help of WebGestalt software. Results: A total of 323 DEGs, including 134 up-regulated and 189 down-regulated, were screened out. The up-regulated DEGs were enriched in 14 subcategories and most significantly in cytoskeleton organization, while the down-regulated DEGs were prevalent in 13 subcategories, especially wound healing. In addition, we identified two important miRNAs (miR-202 and miR-9) pivotal for OS metastasis, and their relevant genes, CALD1 and STX1A. Conclusions: MiR-202 and miR-9 are potential key factors affecting the metastasis of OS and CALD1 and STX1A may be possible targets beneficial for the treatment of metastatic OS. However, further experimental studies are needed to confirm our results.

MiR-886-5p Inhibition Inhibits Growth and Induces Apoptosis of MCF7 Cells

  • Zhang, Lei-Lei;Wu, Jiang;Liu, Qiang;Zhang, Yan;Sun, Zhu-Lei;Jing, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1511-1515
    • /
    • 2014
  • Background and Aims: To explore the molecular mechanisms of miR-886-5p in breast cancer., we examined roles in inhibiting growth and migration of MCF-7 cells. Methods: MiR-886-5p mimics and inhibitors were used to express or inhibit MiR-886-5p, respectively, and MTT and clone formation assays were used to determine the survival and proliferation. Hoechst 33342/ PI double staining was applied to detect apoptosis. The expression of caspase-3, caspase-8, caspase-9, MT1-MMP, VEGF-C and VEGF-D was detected by Western blotting, and the levels of MMP2 and MMP9 secreted from MCF-7 cells were assessed by ELISA. MCF-7 cell migration was determined by wound healing and Transwell assays. Results: We found that the growth of MCF-7 cells was inhibited upon decreasing miR-886-5p levels. Inhibiting miR-866-5p also significantly induced apoptosis and decreased the migratory capacity of these cells. The expression of VEGF-C, VEGF-D, MT1-MMP, MMP2, and MMP9 was also found to be decreased as compared to controls. Conclusions: Our data show that downregulation of miR-886-5p expression in MCF-7 cells could significantly inhibit cell growth and migration. This might imply that inhibiting miR-886-5p could be a therapeutic strategy in breast cancer.

A Novel All-trans Retinoid Acid Derivative N-(3-trifluoromethyl-phenyl)-Retinamide Inhibits Lung Adenocarcinoma A549 Cell Migration through Down-regulating Expression of Myosin Light Chain Kinase

  • Fan, Ting-Ting;Cheng, Ying;Wang, Yin-Feng;Gui, Shu-Yu;Chen, Fei-Hu;Zhou, Qing;Wang, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7687-7692
    • /
    • 2014
  • Aim: To observe the effects of a novel all-trans retinoid acid (ATRA) derivative, N-(3-trifluoromethyl-phenyl)-retinamide (ATPR), on lung adenocarcinoma A549 cells and to explore the potential mechanism of ATPR inhibiting of A549 cell migration. Materials and Methods: The cytotoxicity of ATRA and ATPR on A549 cells was assessed using MTT assay. Wound healing assays were used to analyze the influences of ATRA, ATPR, ML-7 (a highly selective inhibitor of myosin light chain kinase (MLCK)), PMA (an activator of MAPKs) and PD98059 (a selective inhibitor of ERK1/2) on the migration of A549 cells. Expression of MLCK and phosphorylation of myosin light chain (MLC) were assessed by Western blotting. Results: ATRA and ATPR inhibited the proliferation of A549 cells in a dose- and time-dependent manner, and the effect of ATPR was much more remarkable compared with ATRA. Relative migration rate and migration distance of A549 cells both decreased significantly after treatment with ATPR or ML-7. The effect on cell migration of PD98059 combining ATPR treatment was more notable than that of ATPR alone. Moreover, compared with control groups, the expression levels of MLCK and phosphorylated MLC in A549 cells were both clearly reduced in ATRA and ATPR groups. Conclusions: ATPR could suppress the migration and invasion of A549 cells, and the mechanism might be concerned with down-regulating the expression of MLCK in the ERK-MAPK signaling pathway, pointing to therapeutic prospects in lung cancer.

Clinical Experience in Treatment of Diabetic Foot Ulcers Using Platelet Concentrates from Blood Bank (혈액은행 제조의 혈소판 농축액을 이용한 당뇨족부궤양의 치료 경험)

  • Kim, Deok Woo;Han, Seung Kyu;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.33 no.2
    • /
    • pp.198-204
    • /
    • 2006
  • Many clinical trials have shown the effectiveness of the platelet releasate or the platelet gel on chronic wounds. However, the patient's own blood had to be aspirated and processed to make the platelet releasate or a platelet gel. The purpose of this study was to assess the effects of platelet concentrates from the blood bank for the treatment of diabetic foot ulcers. To obtain the basic data of the PDGF-BB content in platelet concentrates supplied from the blood bank, enzyme-linked immunosorbent assay quantification was performed. On average, 8.5 pg of the PDGF-BB was released per 1 million platelets. Sixteen patients with diabetic foot ulcers ranging from 1.0 to $18.0cm^2$(mean, $6.1cm^2$) in size were treated. The platelet concentrates was centrifuged and the precipitantte was mixed with 1 ml of fibrinogen. The platelets and fibrinogen mixture was dispersed on to the ulcer lesions. The liquid platelet and fibrinogen mixture was then sealed using 0.3-1.0 ml of thrombin and moisture dressing was performed. The procedure was repeated every one or two weeks until wound closure. Time required for complete healing ranged from 3 to 12 weeks after treatment (mean, 7.3 weeks). Patient satisfaction was also very positive. In this study, the use of platelet concentrates from the blood bank was found to be effective in treating diabetic foot ulcers.

An Analytical Study of Mammalian Bite Wounds Requiring Inpatient Management

  • Lee, Young-Geun;Jeong, Seong-Ho;Kim, Woo-Kyung
    • Archives of Plastic Surgery
    • /
    • v.40 no.6
    • /
    • pp.705-710
    • /
    • 2013
  • Background Mammalian bite injuries create a public health problem because of their frequency, potential severity, and increasing number. Some researchers have performed fragmentary analyses of bite wounds caused by certain mammalian species. However, little practical information is available concerning serious mammalian bite wounds that require hospitalization and intensive wound management. Therefore, the purpose of this study was to perform a general review of serious mammalian bite wounds. Methods We performed a retrospective review of the medical charts of 68 patients who were referred to our plastic surgery department for the treatment of bite wounds between January 2003 and October 2012. The cases were analyzed according to the species, patient demographics, environmental factors, injury characteristics, and clinical course. Results Among the 68 cases of mammalian bite injury, 58 (85%) were caused by dogs, 8 by humans, and 2 by cats. Most of those bitten by a human and both of those bitten by cats were male. Only one-third of all the patients were children or adolescents. The most frequent site of injury was the face, with 40 cases, followed by the hand, with 16 cases. Of the 68 patients, 7 were treated with secondary intention healing. Sixty-one patients underwent delayed procedures, including delayed direct closure, skin graft, composite graft, and local flap. Conclusions Based on overall findings from our review of the 68 cases of mammalian bites, we suggest practical guidelines for the management of mammalian bite injuries, which could be useful in the treatment of serious mammalian bite wounds.

The Influence of Bcl-3 Expression on Cell Migration and Chemosensitivity of Gastric Cancer Cells via Regulating Hypoxia-Induced Protective Autophagy

  • Hu, Lin;Bai, Zhigang;Ma, Xuemei;Bai, Nan;Zhang, Zhongtao
    • Journal of Gastric Cancer
    • /
    • v.20 no.1
    • /
    • pp.95-105
    • /
    • 2020
  • Purpose: Gastric cancer is a highly metastatic malignant tumor, often characterized by chemoresistance and high mortality. In the present study, we aimed to investigate the role of B-cell lymphoma 3 (Bcl-3) protein on cell migration and chemosensitivity of gastric cancer. Materials and Methods: The gastric cancer cell lines, AGS and NCI-N87, were used for the in vitro studies and the in vivo studies were performed using BALB/c nude mice. Western blotting, wound healing assay, Cell Counting Kit-8 assay, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to evaluate the role of Bcl-3 in gastric cancer. Results: We found that the protein expression of hypoxia (HYP)-inducible factor-1α and Bcl-3 were markedly upregulated under hypoxic conditions in both AGS and NCI-N87 cells in a time-dependent manner. Interestingly, small interfering RNA-mediated knockdown of Bcl-3 expression affected the migration and chemosensitivity of the gastric cancer cells. AGS and NCI-N87 cells transfected with si-RNA-Bcl-3 (si-Bcl-3) showed significantly reduced migratory ability and increased chemosensitivity to oxaliplatin, 5-fluorouracil, and irinotecan. In addition, si-Bcl-3 restored the autophagy induced by HYP. Further, the protective role of si-Bcl-3 on the gastric cancer cells could be reversed by the autophagy inducer, rapamycin. Importantly, the in vivo xenograft tumor experiments showed similar results. Conclusions: Our present study reveals that Bcl-3 knockdown inhibits cell migration and chemoresistance of gastric cancer cells through restoring HYP-induced autophagy.

Aquaporin 8 Involvement in Human Cervical Cancer SiHa Migration via the EGFR-Erk1/2 Pathway

  • Shi, Yong-Hua;Tuokan, Talaf;Lin, Chen;Chang, Heng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6391-6395
    • /
    • 2014
  • Overexpression of aquaporins (AQPs) has been reported in several human cancers. Epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinases 1/2 (Erk1/2) are associated with tumorigenesis and cancer progression and may upregulate AQP expression. In this study, we demonstrated that EGF (epidermal growth factor) induces SiHa cells migration and AQP8 expression. Wound healing results showed that cell migration was increased by 2.79-1.50-fold at 24h and 48h after EGF treatment. AQP8 expression was significantly increased (3.33-fold) at 48h after EGF treatment in SiHa cells. An EGFR kinase inhibitor, PD153035, blocked EGF-induced AQP8 expression and cell migration and AQP8 expression was decreased from 1.59-fold (EGF-treated) to 0.43-fold (PD153035-treated) in SiHa. Furthermore, the MEK (MAPK (mitogen-activated protein kinase)/Erk (extracellular signal regulated kinase)/Erk inhibitor U0126 also inhibited EGF-induced AQP8 expression and cell migration. AQP8 expression was decreased from 1.21-fold (EGF-treated) to 0.43-fold (U0126-treated). Immunofluorescence microscopy further confirmed the results. Collectively, our findings show that EGF induces AQP8 expression and cell migration in human cervical cancer SiHa cells via the EGFR/Erk1/2 signal transduction pathway.

Anticancer Properties of Teucrium persicum in PC-3 Prostate Cancer Cells

  • Tafrihi, Majid;Toosi, Samane;Minaei, Tayebeh;Gohari, Ahmad Reza;Niknam, Vahid;Arab Najafi, Seyed Mahmoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.785-791
    • /
    • 2014
  • Crude extracts or phytochemicals obtained from some plants have potential anti-cancer properties. Teucrium persicum is an Iranian endemic plant belonging to the Lamiaceae family which has traditionally been used to relieve abdominal pains. However, the anti-cancer properties of this species of the Teucrium genus have not been investigated previously. In this study, we have used a highly invasive prostate cancer cell line, PC-3, which is an appropriate cell system to study anti-tumor properties of plants. A methanolic extract obtained from T persicum potently inhibited viability of PC-3 cells. The viability of SW480 colon and T47D breast cancer cells was also significantly decreased in the presence of the T persicum extract. Flow cytometry suggested that the reduction of cell viability was due to induction of apoptosis. In addition, the results of wound healing and gelatin zymography experiments supported anti-cell invasion activity of T persicum. Interestingly, sublethal concentrations of T persicum extract induced an epithelial-like morphology in a subpopulation of cells with an increase in E-Cadherin and ${\beta}$-Catenin protein levels at the cell membrane. These results strongly suggest that T persicum is a plant with very potent anti-tumor activity.