• Title/Summary/Keyword: Workpiece Temperature

Search Result 156, Processing Time 0.027 seconds

A Moving Heat Source Caused by Temperature Distribution in Grinding Process (연삭가공에서 이동열원에 의한 온도 분포)

  • Kwak, T. K.;Ha, M. K.;Koo, Y.;Kwak, J. S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.899-902
    • /
    • 1997
  • The heat generated during surface grinding process can lead to elevate a grinding temperature, which cause the thermal damage to the workpiece material. Because of this reason, it is important to be able to predict the temperature which is occurred during grinding. The process parameters, therefore, should be adjusted properly to yield the acceptable workpiece temperature. In this study, we conducted an experimentation to obtain and also to analyze the temperature distribution of the workpiece with accordance in varying the grinding condition. For measuring the workpiece temperature, thermocouples of the CA type were inserted into the predetermined locations of the workpiece.

  • PDF

Temperature Distribution of Workpiece Varying with Grinding Condition (연삭조건 변화에 따른 가공물의 온도 분포)

  • Ha, Man-Kyung;Kwak, Jae-Seob;Kwak, Tae-Kyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.59-65
    • /
    • 2002
  • Grinding temperature between a grinding wheel and a workpiece surface, rising rapidly during a machining operation, has bad effects on a surface integrity such as the burning, the residual stress and the crack. In this study, the temperature distribution was obtained briefly by the finite element method and the grinding temperature of a workpiece varying with the grinding condition was measured experimentally. For obtaining the grinding temperature, a thermocouple method was applied. Three thermocouples were inserted in a surface of each workpiece. Changed grinding conditions were the depth of cuts, the feedrate, the dry and wet grinding, the up and down grinding and the number of pieces.

The Comparative Analysis of Numerical and Experimental Results for Prediction of Workpiece Temperature in the Commercial Reheating Furnace (상용급 재가열로에서 소재 온도 예측을 위한 해석과 실험 결과의 비교 분석)

  • Lee, Chunsik;Lee, Jae Yong;Ryu, BoHyun;Rhim, DongRyul
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.4
    • /
    • pp.74-79
    • /
    • 2019
  • Specially designed test material was used for workpiece temperature measurement in the commercial reheating furnace and a linearized thermal model was applied for real time temperature prediction. The applied furnace is a walking beam type and specification of the workpiece is a STS302 which is 160mm in width, 160mm in height and 8100mm in length. Also six thermocouples were installed in width, height and length direction for temperature measurement. Ambient temperature in the furnace was raised to 1265 Celsius degrees and it took about 2.5 hours from loading to discharging of the workpiece. As a result of the experiment, temperature of the workpiece at discharge was 1257 Celsius degrees on the average in the range of 1256 to 1259 Celsius degrees, and predicted average temperature through the thermal model was 1251 Celsius degrees. Therefore, the deviation of the analysis and test results is about 6 degrees, which is within the range of 10 degrees required by the industry.

A Basic Study on the Monitoring of Grinding Burn by Grinding Power Signatures (연삭동력에 의한 Grinding Burn 검지를 위한 기초적 연구)

  • 김건희;이재경;안상욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.194-199
    • /
    • 1996
  • Grinding burn formed on the ground surface is related to the maximum temperature of workpiece surface and wheel temperature in the grinding process. The thermal characteristics of workpiece and grinding conditions on the surface temperature of the oxidation growing layer after get out of contact with the grinding wheel. The assumption used in grinding power signatures leads to the local temperature distribution between grinding wheel and workpiece, i.e., a single curve determines temperatures anywhere within the grinding wheel at anytime. This information is useful in the study of the grinding bum penetration into the wheel and thus provides an presentation of grinding trouble monitoring for the burning. On the basis of grinding power signatures in the wheel, thermally optimum conditions are defined and controlled. To cope with grinding burn, the use of grinding power signatures is an effective monitoring systems when occurring the grinding process. In this paper, the identified parameters suggested in this study which are derived from the grinding power signatures are presented.

  • PDF

A Study on the Prediction of Thermal Deformation Using Temperature Analysis in Surface Grinding Process (연삭가공시 온도해석을 통한 열변형 예측)

  • 김강석;곽재섭;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.19-23
    • /
    • 1995
  • The thermal deformation of a workpiece during grinding is one of the most important factors that affect a flatness of a grinding surface. The heat generated in one-pass surface grinding causes the convex deformation of a workpiece. Therefore, the ground durfae represents a concave profile. In the analysis a simple model of the temperature distribution, based on the results of a finite element method, is applied. Theanalyzed results are compared with experimental results in surface grinding. The main results obtained are as follows: (1) The temperature distribution of a workpiece by FEM has a good agreement with the experimental results. (2) The bending moment by generated heat causes a convex deformation of the workpiece and it leads to a concave profile of the grinding surface.

  • PDF

A study on Linear Pattern Fabrication of Plate-type Polymer by Using Thermal Nano Imprint Lithography Process (열간나노임프린트공정을 이용한 평판형 폴리머 소재의 선형 패턴 제작에 관한 연구)

  • Joung, Y.N.;Lee, C.S.;Youn, S.W.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.616-624
    • /
    • 2009
  • In this work we demonstrate the hot-embossing process under different forming conditions such as forming temperature, load, and holding time in pressing, in order to determine the suitable conditions required for linear patterning on polymer plates (PC). Results showed that the replicated pattern depth increased in proportion to an increase in the forming temperature, load, and time. The reduction of the workpiece thickness increased according to the holding time in the pressing process. In the process of time, the reduction ratio of the workpiece thickness decreased due to the surface area increment of the workpiece, while the pressure on the workpiece declined. In order to reduce the bulging ratio we introduced a temperature difference between the upper and the lower punch.

A Study of Interface Heat Transfer Coefficient Between Die and Workpiece for Hot Forging (열간단조시 금형과 소재간 계면열전달계수에 관한 연구)

  • Kwon J. W.;Lee J. H.;Lee Y. S.;Kwon Y. N.;Bae W. B.
    • Transactions of Materials Processing
    • /
    • v.14 no.5 s.77
    • /
    • pp.460-465
    • /
    • 2005
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change for the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The closed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, A16061, and Cu-OFHC were used to analyze the effect of material. The coefficient was increased with step-up of pressure between die and workpiece. And, A16061 was larger than that of the AISI1045 and Cu-OFHC up to the five times.

A study of interface heat transfer coefficient between die and workpiece for hot forging (열간단조시 금형과 소재간 계면열전달계수에 관한 연구)

  • Kwon J.W.;Lee Y.S.;Kwon Y.N.;Lee J.H.;Bae W.B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.122-126
    • /
    • 2004
  • The temperature difference between die and workpiece has been frequently caused to various surface defects. The distribution and change fur the temperature of forged part should be analyzed to prevent the generation of various defects related with the temperature. The surface temperature changes were affected with the interface heat transfer coefficient. Therefore, the coefficient is necessary to predict the temperature changes of die and workpiece. In this study, the experimental and FE analysis were performed to evaluate the coefficient with a function of pressure, temperature, material, and etc. The sealed die upsetting was used to measure the coefficient on pressure over the flow stress. AISI1045, Al6XXX, and Pure-Cupper were used to analyze effects according to the material. The coefficient was increased with step-up of pressure between die and workpiece. And, Al6XXX was larger than the AISI1045 and Pure-Cupper up to the five times.

  • PDF

The Effects of Various Burner Array on Workpiece and Gas Temperature in a Continuous Reheating Furnace (연속식 가열로에서 버너배열에 따른 소재 및 가스온도의 영향)

  • Kim, Kang-Min;Jeon, Chung-Hwan;Yoo, In;Kim, Gyu-Bo
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.23-31
    • /
    • 2017
  • Numerical study was conducted for the effects of various burner array on the workpiece and the gas temperature in a continuos reheating furnace. Under the same conditions which were the total heat of combustion, the heat capacity of unit burner, the number of burner and burner array were changed to be applied the furnace. The behavior of workpiece temperature and gas temperature in a furnace were evaluated for the effects as function of the changed conditions. A continuous reheating furnace designed for 110 tons/day of production capacity was applied in this study. The furnace which has several gas burners is designed to heat a workpiece. By this study, the better condition was confirmed than the existing designed condition.

The Geometric Error Analysis by Various Various Inputs In Surface Grinding (평면연삭에서 다변수 입력에 의한 형상오차 해석)

  • 김강석;홍순익;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.868-872
    • /
    • 1997
  • The thermal deformation of a workpiece during grinding is one of the most important factors that affect a flatness of a grinding surface. The heat generated in one-pass surface grinding causes the convex deformation of a workpiece. Therefore, the ground surface represents a conacve profile. In the analysis a simple model of the temperature distribution,based on the result of a finite element method, is applied. The analyzed results are compared with experimental results in surface grinding. The main results obtained are as follows; (1) The temperature distibution of a workpiece by FEM is comparatively in good agreement with the experimental results. (2) The bending moment by generated heat cause a convex deformation of the workpiece and it reads to a concave profile of the grinding surface.

  • PDF