DOI QR코드

DOI QR Code

The Effects of Various Burner Array on Workpiece and Gas Temperature in a Continuous Reheating Furnace

연속식 가열로에서 버너배열에 따른 소재 및 가스온도의 영향

  • 김강민 (부산대학교 기계공학부) ;
  • 전충환 (부산대학교 기계공학부) ;
  • 유인 (컴버스텍) ;
  • 김규보 (부산대학교 화력발전에너지분석기술센터)
  • Received : 2017.04.26
  • Accepted : 2017.05.04
  • Published : 2017.06.30

Abstract

Numerical study was conducted for the effects of various burner array on the workpiece and the gas temperature in a continuos reheating furnace. Under the same conditions which were the total heat of combustion, the heat capacity of unit burner, the number of burner and burner array were changed to be applied the furnace. The behavior of workpiece temperature and gas temperature in a furnace were evaluated for the effects as function of the changed conditions. A continuous reheating furnace designed for 110 tons/day of production capacity was applied in this study. The furnace which has several gas burners is designed to heat a workpiece. By this study, the better condition was confirmed than the existing designed condition.

열전달 및 에너지평형모델을 적용하여 연속식 가열로에서의 버너 배열에 따른 소재 및 노내 가스 온도의 영향을 수치해석으로 분석하였다. 연속식 가열로에서의 최적화된 소재의 가열구간을 확보하기 위해 한정된 공간을 갖는 노 내에서 총 공급열량을 동일한 조건으로 하고 가열능력에 따른 버너의 출력, 대수 및 배열 등을 조절하여 소재의 온도와 노 내 가스온도에 미치는 영향을 수치 해석적 방법으로 살펴보았다. 수치 해석적 방법을 통해 110톤/일의 생산량을 가지도록 설계된 기존의 가스 연소식 버너를 포함하는 연속식 가열로의 성능을 유지하면서 가스온도가 가열대 및 균열대의 중간지점에서 최대 값의 차이가 약 $40^{\circ}C$ 낮아 설비에 부하가 적고 소재목표 추출온도에 도달하는 $1,175^{\circ}C$조건의 버너배열을 도출하였다.

Keywords

References

  1. Kim, K. M., et al., 2015, A numerical study on the efficiency of an industrial furnace for oxygen combustion conditioins, KOSEE, Vol. 24, No. 3, pp. 82-88
  2. Lee, G. W., et al., 2014 On the thermal behavior of the slab in a reheating furnace with radiation, WASET, Vol. 8, No. 5, pp. 922-927
  3. Kim, M. Y., 2007, A heat transfer model for the analysis of transient heating of the slab in a direct- fired walking beam type reheating furnace, Internation Journal of Heat and Mass Transfer, vol. 50, pp. 3740-3748 https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.023
  4. Wild, D., et al., 2009, Modelling and experimental model validation for a pusher-type reheating furnace, Mathematical and Computer Modelling of Dynamical Systems, vol. 15, pp. 209-232 https://doi.org/10.1080/13873950902927683
  5. Hsieh, C. T., et al., 2010, A numerical study of skid marks on the slabs in a walking-beam type slab reheating furnace, Numerical Heat Transfer, Part A, vol. 57, pp. 1-17
  6. Panjkovic. V., et al., 2012, Fast dynamic heat and mass balance model of walking beam reheat furnace with two-dimensional slab temperature profile, Ironmaking & Steelmaking, vol. 39, pp. 190-209 https://doi.org/10.1179/1743281211Y.0000000081
  7. Emadi. A., et al., 2014, Heating characteristics of billet in a walking hearth type reheating furnace, Applied Thermal Engineering, vol. 63, pp. 396-405 https://doi.org/10.1016/j.applthermaleng.2013.11.003
  8. Unal Camdali, Murat. Tunc, 2006, Steady State Heat Transfer of Ladle Furnace During Steel Production Process, Journal of Iron and Steel Research, International, Volume 13, Issue 3, pp. 18-25, https://doi.org/10.1016/S1006-706X(06)60054-X
  9. Radhakrishnan Purushothaman, 2008, Evaluation and Improvement of Heat Treat Furnace Model, Dissertation, WORCESTER POLYTECHNIC INSTITUTE