• 제목/요약/키워드: Working temperature

검색결과 1,482건 처리시간 0.036초

금속 촉매가 ZnO 박막을 감지물질로 이용한 NO 센서의 특성에 미치는 영향 (Effects of metal catalysts on the characteristics of NO sensor using ZnO thin film as sensing material)

  • 정귀상;정재민
    • 센서학회지
    • /
    • 제19권1호
    • /
    • pp.58-61
    • /
    • 2010
  • This paper describes the fabrication and characteristics of NO sensor using ZnO thin film by RF magnetron sputter system. The sensitivity, working temperature, and response time of sputtered pure ZnO thin film and added catalysts such as Pt, Pd, Al, Ti on those films were measured and analyzed. The sensitivity of pure ZnO thin film at working temperature of $300^{\circ}C$ is 0.875 in NO gas concentration of 0.046 ppm. At same volume of the gas in chamber, measuring sensitivity of 1.87 at $250^{\circ}C$ was the case of Pt/ZnO thin film. The ZnO thin films added with catalyst materials were showed higher sensitivity, lower working temperature and faster adsorption characteristics to NO gas than pure ZnO thin film.

프레온-22를 작동유체로 사용한 소용량 온도차 발전에 관한 실험적 연구 (An Experimental Study on the Small Power Generation of Temperature difference using the Freon-22 as Working Fluid)

  • 전춘생;신익호;허창수
    • 태양에너지
    • /
    • 제8권2호
    • /
    • pp.26-38
    • /
    • 1988
  • If proper design and selection of the working fluid are made the power generation system of temperature difference could achieve more efficient results than others. This paper is to analysis the production of its power generation due to several parameters. Making the power generation system, the characteristics of power output are investigated to obtain its basic data for design. This results of this experiment are as follows. 1. The most proper working fluid in the system is Freon-22 having high stability and difference between the outlet pressure, $P_E$ of evaporator and outlet pressure, $P_c$ of Condenser. 2. With the increase of temperature difference between evaporator and condenser, the output in the system increases linearly. 3. The generation efficiency is largely dependent on the type or form of propeller, nozzle and optimum design of heat exchanger.

  • PDF

핀치포인트온도차에 따른 해양온도차발전용 유기랭킨사이클의 성능분석 (Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to pinch point temperature difference)

  • 김준성;김도엽;강호근;김유택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권6호
    • /
    • pp.476-483
    • /
    • 2016
  • 해양온도차발전용 유기랭킨사이클은 해양의 표층수와 심층수사이의 온도차를 이용하여 발전하는 사이클이다. 작동유체는 유기랭킨사이클의 열역학적 성능에 있어 중요한 요소이다. 유기랭킨사이클의 열역학적 분석방법으로 핀치포인트분석이 있다. 본 연구는 열교환기내 핀치포인트온도차의 변화와 열원 및 열침의 출구온도의 변화에 따른 열역학적 성능분석을 수행하였다. 핀치포인트분석법에 따라 설계한 해양온도차발전용 단순랭킨사이클에 7종의 단일 작동유체를 적용하여 열역학적 성능을 분석하였다. 성능분석결과 열교환기에서 핀치포인트온도차와 열원 및 열침의 온도변화가 작을수록 사이클 총 비가역성 및 총 엑서지 파괴인자가 감소하였으며, 제2법칙 효율은 상승하였다. 또한 비가역성은 열역학적 변화가 발생한 곳에서 크게 변화하였다. RE245fa2는 선정한 작동유체 중에서 가장 우수한 열역학적 성능을 보여주었으며, 모든 작동유체의 성능은 유사하였다. 열교환기 및 작동유체 선정에 있어 열역학적 성능과 함께 다양한 요소들에 대해서도 엄밀한 이론적 근거가 필요하다.

여대생의 생활 습관에 따른 국소한랭혈관 반응 (Finger temperature Response According to Daily Life of Female College Student)

  • 김양원;송은영
    • 한국생활과학회지
    • /
    • 제20권1호
    • /
    • pp.195-203
    • /
    • 2011
  • The purpose of this study was to define the effects of the finger temperature response according to the daily life of college student. For this study, 31 healthy female college students were taken as a subject group. To define the effects of the finger temperature response, housing style, subjective thermal sensations during daily life in the house and domestic working time were surveyed. The finger temperature response items were measured. The results were as follows. Strong, normal and weak group members were divided according to their cold resistance index(RI) 3, 8, 20 people, repectively. Subjective thermal sensations during daily life in the house affects the cold resistance index(p<.01). The cold resistance index(RI) got higher as domestic working time was increased(p<.05, F-value=3.927). The percentage wearing protective gloves during domestic work in the weak group was higher than the normal or strong groups. Subjective sensations during daily life and domestic working time effected the local cold tolerance, living in a comfortable environment continuously can weaken one's cold tolerance.

Overview on Ceramic and Nanostructured Materials for Solid Oxide Fuel Cells (SOFCs) Working at Different Temperatures

  • Priya, S. Dharani;Selvakumar, A. Immanuel;Nesaraj, A. Samson
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.99-116
    • /
    • 2020
  • The article provides information on ceramic / nanostructured materials which are suitable for solid oxide fuel cells (SOFCs) working between 500 to 1000℃. However, low temperature solid oxide fuel cells LTSOFCs working at less than 600℃ are being developed now-a-days with suitable new materials and are globally explored as the "future energy conversion devices". The LTSOFCs device has emerged as a novel technology especially for stationary power generation, portable and transportation applications. Operating SOFC at low temperature (i.e. < 600℃) with higher efficiency is a bigger challenge for the scientific community since in low temperature regions, the efficiency might be less and the components might have exhibited lower catalytic activity which may result in poor cell performance. Employing new and novel nanoscale ceramic materials and composites may improve the SOFC performance at low temperature ranges is most focused now-a-days. This review article focuses on the overview of various ceramic and nanostructured materials and components applicable for SOFC devices reported by different researchers across the globe. More importance is given for the nanostructured materials and components developed for LTSOFC technology so far.

유속에 따른 열선의 과열비 조정을 통한 열선유속계의 감도향상에 관한 연구 (Sensitivity Enhancement of a Hot-Wire Anemometer by Changing Overheat Ratio with Velocity)

  • 이신표;고상근
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2678-2689
    • /
    • 1995
  • In this study, a new hot-wire anemometer which has greater sensitivity than that of a constant temperature anemometer (CTA) was proposed. In contrast to CTA, the wire working resistance of the new anemometer increases with flow velocity, that is, the operating mode of the wire becomes variable temperature. The variable temperature anemometer(VTA) was made by substituting a voltage controlled variable resistor such as photoconductive cell or transistor for one of the resistors in the bridge. By positively feeding back the bridge top signal to the input side of these electronic components, the wire overheat ratio could be increased with velocity automatically. Static response analyses of the VTA, constant voltage anemometer (CVA) and CTA were made in detail and calibration experiments were performed to validate the proposed operating principle. The wire operating resistance of the CVA decreases with velocity and this leads to lower sensitivity than that of a CTA. But the sensitivity of the newly proposed VTA is superior to that of a CTA, since the wire overheat ratio increases with velocity. Consequently, it is found that the major factor that is responsible for large sensitivity of a VTA is not the working resistance itself but the change of the wire working resistance with velocity.

스크린 메쉬형 가변전열 히트파이프에서 NCG양에 따른 작동특성 변화 (Influence of NCG Charging Mass on the Thermal Characteristics of Variable Conductance Heat Pipe with Screen Mesh Wick)

  • 서정세;박영식;강창호;정경택;박기호;이기우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1400-1405
    • /
    • 2004
  • Experimental study is performed to investigate the effect of heat load and operating temperature on the thermal performance of a heat pipe with screen mesh wick. The heat pipe was designed in 200 screen meshes, 500mm length and 12.7mm O.D tube of copper, water as working fluid(4.8g) and nitrogen as non-condensible gas(NCG). The heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Experimental data of axial wall temperature distribution is presented for heat transport capacity, the temperature of cooling water of condenser, inclination angle, and operating temperature. For the results from this study, it is found that, for the same charging mass of working fluid, the initial operating temperature and the overall wall temperatures of heat pipe are higher for NCG charging mass of $5.0{\times}10^{-6}kg$ and $3.4{\times}10^{-6}kg$, than that of $1.0{\times}10^{-6}kg$.

  • PDF

지열원 히트펌프를 이용한 도로융설시스템의 CFD 성능예측에 관한 기초연구 (A Basic Study on the Performance CFD simulation of Road Snow-melting system by Ground Source Heat Pump)

  • 최덕인;김중현;김진호;황광일
    • 한국지열·수열에너지학회논문집
    • /
    • 제6권2호
    • /
    • pp.23-28
    • /
    • 2010
  • Fluent ver.6.3 is used as CFD(Computational Fluid Dynamics) simulator to predict the performance of snow-melting system by geothermal pipes energy. As the results of this simulation, it is clearly shown that $50^{\circ}C$ of working fluid in to geothermal evaluated as more effect comparing to $45^{\circ}C$ of working fluid. The Surface temperature is come to $5^{\circ}C$ at 1m/s speed and $50^{\circ}C$ temperature of the working fluid.

농민의 작업환경별 노동부담경감방안에 관한 연구(II) - 여름철 노지에서 대파재배 작업을 중심으로 - (A Study for Farmers to Reduce Work Load on the Different Working Conditions (part II) - Cultivating Welsh Onion in the Summer Ground -)

  • 김명주;최정화
    • 한국농촌생활과학회지
    • /
    • 제8권2호
    • /
    • pp.119-124
    • /
    • 1997
  • In this study we tried to give a decision on propriety of working conditions, to present ideas on reducing work loads, and to grope for efficiency of agricultural works. For this we examined the actual working conditions of cultivating welsh onion in the summer ground. And we improved harmful factors that affect farmer's health by considering results of previous study and farmer's subjective sensation. And we measured. compared, and analyzed the farmer's work loads before and after improvement. The results of this study are as follows ; 1. According to examine the actual working conditions of cultivating welsh onion in the summer ground, farmers have experienced physical and mental chronic fatigue on the basis of farmer's appel to eye - fatigue and sun - burned skin on hot working environment including excessive ultraviolet rays, the rough ground condition, inconsistent arrangement of working stand and sorter, heavy - weared habits, and unsuitable working posture. 2. When we improved harmful factors that affect farmer's health, conformed the effects on important work efficiency index such as heart rate, electromyovolume, body temperature, and microclimate inside clothing and work loads were decreased by eliminating the hillock and obstacles of ground, decreasing the clothing weight, using proper clothing appliances such as hat and sunglasses, controlling height of working stand and sorter suitably, improving the working postures and methods as using assistant appliances, alloting the working time and sequence effectively and presenting the light gymnastic exercises and rest for fatigue restoration.

  • PDF

An investigation on the in si.tu measurement of the oil-concentration

  • Kim, Chang-Nyeun;Park, Young-Moo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권1호
    • /
    • pp.20-28
    • /
    • 2001
  • In order to predict thermodynamic performance of refrigeration system, it is required to know the oil concentration of the refrigerant/oil mixture. The current method is to extract the working mixture and then to measure the oil weight. In this study, oil concentration is measured in si.tu way without any extraction of the working fluid. Based on the measurement, a working equation is presented as follows, C=a +b x t +c x $t^2$ +(d + e x t +f x $t^2$) x SG. C is oil concentration, t is temperature($^{\circ}C). SG Is specific gravity of mixture and a~f is coefficients The oil concentration ranges over 0~l2 wt% and the temperature ranges over 20~50$^{\circ}C. The specific gravity and temperature are measured using the on-line densimeter and thermometer. This working equation enables to predict the oil concentration without any extraction of the mixture. This equation can be applied for R-12/Naphthenic oil and R-134a/P0E oil liquid mixtures.

  • PDF