DOI QR코드

DOI QR Code

핀치포인트온도차에 따른 해양온도차발전용 유기랭킨사이클의 성능분석

Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to pinch point temperature difference

  • Kim, Jun-Seong (Department of Marine System Engineering, Graduate School of Korea Maritime and Ocean University) ;
  • Kim, Do-Yeop (Nuclear Power Equipment Research Center, Korea Maritime and Ocean University) ;
  • Kang, Ho-Keun (Division of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Kim, You-Taek (Division of Marine System Engineering, Korea Maritime and Ocean University)
  • 투고 : 2016.04.22
  • 심사 : 2016.07.04
  • 발행 : 2016.07.31

초록

해양온도차발전용 유기랭킨사이클은 해양의 표층수와 심층수사이의 온도차를 이용하여 발전하는 사이클이다. 작동유체는 유기랭킨사이클의 열역학적 성능에 있어 중요한 요소이다. 유기랭킨사이클의 열역학적 분석방법으로 핀치포인트분석이 있다. 본 연구는 열교환기내 핀치포인트온도차의 변화와 열원 및 열침의 출구온도의 변화에 따른 열역학적 성능분석을 수행하였다. 핀치포인트분석법에 따라 설계한 해양온도차발전용 단순랭킨사이클에 7종의 단일 작동유체를 적용하여 열역학적 성능을 분석하였다. 성능분석결과 열교환기에서 핀치포인트온도차와 열원 및 열침의 온도변화가 작을수록 사이클 총 비가역성 및 총 엑서지 파괴인자가 감소하였으며, 제2법칙 효율은 상승하였다. 또한 비가역성은 열역학적 변화가 발생한 곳에서 크게 변화하였다. RE245fa2는 선정한 작동유체 중에서 가장 우수한 열역학적 성능을 보여주었으며, 모든 작동유체의 성능은 유사하였다. 열교환기 및 작동유체 선정에 있어 열역학적 성능과 함께 다양한 요소들에 대해서도 엄밀한 이론적 근거가 필요하다.

An organic Rankine cycle for ocean thermal energy conversion system is a generating cycle using the temperature difference between surface water and deep water of the ocean. The working fluid is an important factor in the thermodynamic performance of an organic Rankine cycle. There is pinch point analysis as thermodynamic analysis of an organic Rankine cycle. This study performed a thermodynamic performance analysis according to variation in the pinch point temperature difference in heat exchangers and variation of outlet temperature of heat source and heat sink. It analyzed the thermodynamic performance by applying seven types of simple working fluids in a simple Rankine cycle for ocean thermal energy conversion that was designed according to pinch point analysis. As a result of the performance analysis, cycle irreversibility and total exergy destruction factor more decreased, and second law efficiency more increased in the lower pinch point temperature difference and temperature variation of heat source and heat sink in heat exchangers. In addition, the irreversibility changed greatly at a point that occurred in the thermodynamic variation. Among the selected working fluids, RE245fa2 showed the best thermodynamic performance, and the performance of all working fluids was observed to be similar. It needs a strict theoretical basis about diverse factors with thermodynamic performances in selecting heat exchangers and working fluids.

키워드

참고문헌

  1. F. Sun, Y. Ikegami, B. Jia and H. Arima, "Optimization design and exergy analysis of organic rankine cycle in ocean thermal energy conversion," Journal of the Applied Ocean Research, vol. 35, pp. 38-46, 2012. https://doi.org/10.1016/j.apor.2011.12.006
  2. B. F. Tchanche, M. Petrissans, and G. Papadakis, "Heat resources and organic Rankine cycle machines," Journal of the Renewable and Sustainable Energy Reviews, vol. 39, pp. 1185-1199, 2014. https://doi.org/10.1016/j.rser.2014.07.139
  3. M. H. Yang and R. H. Yeh, "Analysis of optimization in an OTEC plant using organic Rankine cycle," Journal of the Renewable Energy, vol. 68, pp. 25-34, 2014. https://doi.org/10.1016/j.renene.2014.01.029
  4. L. A. Vega, "Ocean thermal energy conversion primer," Journal of the Marine Technology Society, vol. 6, no. 4, pp. 25-35, 2003.
  5. B. F. Tchanche, G. Lambrinos, A. Frangoudakis, and G. Papadakis, "Low-grade heat conversion into power using organic Rankine cycles - A review of various applications," Journal of the Renewable and Sustainable Energy Reviews, vol. 15, no. 8, pp. 3963-3979, 2011. https://doi.org/10.1016/j.rser.2011.07.024
  6. R. Soto and J. Vergara, "Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion," Journal of the Applied Thermal Engineering, vol. 62, no. 1, pp. 105-112, 2014. https://doi.org/10.1016/j.applthermaleng.2013.09.025
  7. E. H. Wang, H. G. Zhang, B. Y. Fan, M. G. Ouyang, Y. Zhao, and Q. H. Mu, "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Journal of the Energy, vol. 36, no. 5, pp. 3406-3418, 2011. https://doi.org/10.1016/j.energy.2011.03.041
  8. B. F. Tchanche, G. Papadakis, G. Lambrinos, and A. Frangoudakis, "Fluid selection for a low-temperature solar organic Rankine cycle," Journal of the Applied Thermal Engineering, vol. 29, no. 11-12, pp. 2468-2476, 2009. https://doi.org/10.1016/j.applthermaleng.2008.12.025
  9. V. L. Le, M. Feidt, A. Kheiri, and S. P. Prayer, "Performance optimization of low-temperature power generation by supercritical ORCs (organic Rankine cycles) using low GWP (global warming potential)," Journal of the Energy, vol. 67, pp. 513-526, 2014. https://doi.org/10.1016/j.energy.2013.12.027
  10. Y. Li, J. Wang, and M. Du, "Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle," Journal of the Energy, vol. 42, no. 1, pp. 503-509, 2012. https://doi.org/10.1016/j.energy.2012.03.018
  11. H. Aydin, H. S. Lee, H. J. Kim, S. K. Shin, and K. Park, "Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating," Journal of the Renewable Energy, vol. 72, pp. 154-163, 2014. https://doi.org/10.1016/j.renene.2014.07.001
  12. C. Guo, X. Du, L. Yang, and Y. Yang, "Performance analysis of organic Rankine cycle based on location of heat transfer pinch point in evaporator," Journal of the Applied Thermal Engineering, vol. 62, no. 1, pp. 176-186, 2014. https://doi.org/10.1016/j.applthermaleng.2013.09.036
  13. D. Wang, X. Ling, and H. Peng, "Performance analysis of double organic Rankine cycle for discontinuous low temperature waste heat recovery," Journal of the Applied Thermal Engineering, vol. 48, pp. 63-71, 2012. https://doi.org/10.1016/j.applthermaleng.2012.04.017
  14. M. Yari, A. Mehr, V. Zare, S. Mahmoudi, and M. Rosen, "Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC(organic Rankine cycle) and Kalina cycle using a low grade heat source," Journal of the Energy, vol. 83, pp. 712-722, 2015. https://doi.org/10.1016/j.energy.2015.02.080
  15. Z. Shengjun, W. Huaixin, and G. Tao, "Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation," Journal of the Applied Energy, vol. 88, no. 8, pp. 2740-2754, 2011. https://doi.org/10.1016/j.apenergy.2011.02.034
  16. K. A. Barse and M. D. Mann, "Maximizing ORC performance with optimal match of working fluid with system design," Journal of the Applied Thermal Engineering, vol. 100, pp. 11-19, 2016. https://doi.org/10.1016/j.applthermaleng.2016.01.167
  17. D. Wei, X. Lu, Z. Lu, and J. Gu, "Performance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery," Journal of the Energy Conversion and Management, vol. 48, no. 4, pp. 1113-1119, 2007. https://doi.org/10.1016/j.enconman.2006.10.020
  18. J. S. Kim, D. Y. Kim, Y. T. Kim, and H. K. Kang, "Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to the working fluid and the cycle," Journal of the Korean Society of Marine Engineering, vol. 39, no. 9, pp. 881-889, 2015. https://doi.org/10.5916/jkosme.2015.39.9.881
  19. Y. A. Cengel and M. A. Boles, Thermodynamics, Seoul, South Korea, McGraw-Hill Education Korea, 2011.

피인용 문헌

  1. 폐기물 소각시설 굴뚝의 배기가스를 이용한 유기랭킨사이클 시스템의 열역학적 해석 vol.21, pp.5, 2016, https://doi.org/10.7842/kigas.2017.21.5.27