• Title/Summary/Keyword: Working Robot

Search Result 347, Processing Time 0.026 seconds

Obstacle Avoidance and Path Planning for a Mobile Robot Using Single Vision System and Fuzzy Rule (모노비전과 퍼지규칙을 이용한 이동로봇의 경로계획과 장애물회피)

  • 배봉규;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.274-277
    • /
    • 2000
  • In this paper we propose new algorithms of path planning and obstacle avoidance for an autonomous mobile robot with vision system. Distance variation is included in path planning to approach the target point and avoid obstacles well. The fuzzy rules are also applied to both trajectory planning and obstacle avoidance to improve the autonomy of mobile robot. It is shown by computer simulation that the proposed algorithm is working well.

  • PDF

Development of Continuous/Intermittent Welding Mobile Robot (연단속 용접 주행로봇의 개발)

  • 강치정;전양배;감병오;신승화;김상봉
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.31-33
    • /
    • 2000
  • Welding processing is used in the various industrial fields such as shipbuilding, car, airplane and steel structure, etc.. But the welding process has a bad working condition and lack of skillful worker. The welding depended on man power causes low productivity and difficulty in keeping continuous and stable quality control. This paper shows the development results of welding mobile robot with the several functions such as continuous/intermittent welding, initial welding speed control, acceleration control, crater and deceleration speed control in welding end. The robot is developed based on microprocess which is intel 80c196kc.

  • PDF

Design of a Control Architecture for an Internet-based Robot Control System

  • Nguyen, To-Dong;Oh, Sang-Rok;You, Bum-Jae;Myung Hwangbo;Lee, Brian-Kwang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.92.5-92
    • /
    • 2002
  • $\textbullet$ Introduction to the concept of the Mobile Robot working mode(online and of offline mode) $\textbullet$ Introduction to the Issac Robot Specification $\textbullet$ Discussion on the technology selection $\textbullet$ Description of the system and software architecture $\textbullet$ System implementation result. $\textbullet$ Conclusion and future work

  • PDF

Clean mobile robot for wafer transfer (Wafer 낱장 반송용 이동 로봇의 개발)

  • 성학경;이성현;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.161-161
    • /
    • 2000
  • The clean mobile robot for wafer transfer is AGV that carry each wafer to each equipment. It has wafer handling technology, wafer ID recognition technology, position calibration technology using vision system, and anti-vibration technology. Wafer loading/unloading working accuracy is within ${\pm}$1mm, ${\pm}$3$^{\circ}$. By application of this AGV, we can reduce the manufacturing tack time and bring cost down of equipment.

  • PDF

Study on the design and the control of an underwater construction robot for port construction (항만공사용 수중건설로봇의 기구설계 및 제어에 관한 연구)

  • Kim, Tae-Sung;Kim, Chi-Hyo;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.39 no.3
    • /
    • pp.253-260
    • /
    • 2015
  • There are many efforts to mechanize the process for underwater port construction due to the severe and adverse working environment. This paper presents an underwater construction robot to level rubbles on the seabed for port construction. The robot is composed of a blade and a multi-functional arm to flatten the rubble mound with respect to the reference level at uneven terrain and to dig and dump the rubbles. This research analyzes the kinematics of the blade and the multi-functional arm including track and swing motions with respect to a world coordinate assigned to a reference depth sensor. This analysis is conducted interfacing with the position and orientation sensors installed at the robot. A hydraulic control system is developed to control a track, a blade and a multi-functional arm for rubble leveling work. The experimental results of rubble leveling work conducted by the robot are presented in land and subsea. The working speed of the robot is eight times faster than that of a human diver, and the working quality is acceptable. The robot is expected to have much higher efficiency in deep water where a human diver is unable to work.

The Effects of Controller Stiffness on the Vibration of Robot Joints (제어기강성이 로봇관절의 진동에 미치는 영향)

  • 경현태;김재원;김문상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.260-270
    • /
    • 1994
  • With the prevalent use of robot, the interests in moving speed of robot have been increasing for the purpose of upgrading performance of production. But the faster robot manipulator moves, the worse working accuracies are. And mechanical vibration is more and more serious with the increment of the moving speed of robot. So, the study on the cause and control method of robot vibration is one of the points of issue in robotics. This paper focuses on the vibration of 3 DOF parallel link drive mechanism robot. We assume that links of robot manipulator are `rigid' and joints are `flexible elements'. Governing equations of robot system including controller, servo amplifier, D.C servo motor, transmission with elasticity, and manipulator dynamics are derived. On the basis of modelling, we define `controller stiffness' by the proportional gain of controller and `stiffness of transmission'. Numerical and experimental research is performed to study vibration phenomena of robot induced from the variation of these two defined stiffnesses, and its results are shown.

Implementation of Path Finding Method using 3D Mapping for Autonomous Robotic (3차원 공간 맵핑을 통한 로봇의 경로 구현)

  • Son, Eun-Ho;Kim, Young-Chul;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.168-177
    • /
    • 2008
  • Path finding is a key element in the navigation of a mobile robot. To find a path, robot should know their position exactly, since the position error exposes a robot to many dangerous conditions. It could make a robot move to a wrong direction so that it may have damage by collision by the surrounding obstacles. We propose a method obtaining an accurate robot position. The localization of a mobile robot in its working environment performs by using a vision system and Virtual Reality Modeling Language(VRML). The robot identifies landmarks located in the environment. An image processing and neural network pattern matching techniques have been applied to find location of the robot. After the self-positioning procedure, the 2-D scene of the vision is overlaid onto a VRML scene. This paper describes how to realize the self-positioning, and shows the overlay between the 2-D and VRML scenes. The suggested method defines a robot's path successfully. An experiment using the suggested algorithm apply to a mobile robot has been performed and the result shows a good path tracking.

A Sealing Robot System for Cracks on Concrete Surfaces with Force Tracking Controller (다양한 형상의 콘크리트 표면 실링을 위한 로봇 시스템)

  • Cho, Cheol-Joo;Lim, Kye-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.374-381
    • /
    • 2016
  • The sealing technique is widely used for repairing the cracks on the surface of concrete and preventing their expansion in the future. However, it is difficult to ensure the safety of the workers when sealing large structures in inconvenient working environments. This paper presents the development of a sealing robot system to seal various shapes of concrete surface in rough conditions for a long time. If the robot can maintain the desired contact force, the cracks can be completely sealed. An impedance force tracking controller with slope estimator is proposed to calculate the surface slope in real time using the robot position. It predicts the next point in order to prevent the robot from disengaging from the contact surface owing to quick slope changes. The proposed method has been verified by experimental results.

Time-Varying Joint Constraint Map Using View Time Concept and Its Use on the Collision Avoidance of Two Robots (View Time 개념을 이용한 지변 조인트 제한 지도(JCM) 상에서의 두 로보트의 충돌 회피에 관한 연구)

  • 남윤석;이범희;고명삼;고낙용
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1770-1781
    • /
    • 1989
  • Two robots working in a common workspace may collide with each other. In this paper, a collision-free motion planning algorithm using view time concept is proposed to detect and avoid collision before robot motion. Collision may occur not only at the robot end effector but also at robot links. To detect and avoid potential collisions, the trajectory of the first robot is sampled periodically at every view time and the region in Cartesian space swept by the first robot is viewed as an obstacle during a single sampling period. The forbidden region in the joint constraint map (JCM). The JCM's are obtained in this way at every view time. An algorithm is established for collision-free motion planning of the two robot system from the sequence of JCM's and it is verified by simulations.

  • PDF