• Title/Summary/Keyword: Working Position

Search Result 931, Processing Time 0.028 seconds

The Relationship between Empowerment and Performance of Infection Control by Emergency Department Nurses (응급실 간호사의 임파워먼트와 감염관리 수행도의 관계)

  • Yoon, Jong-Mi;Sung, Mi-Hae
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.16 no.4
    • /
    • pp.412-420
    • /
    • 2009
  • Purpose: The purpose of this study was to identify the relationship between empowerment and performance of infection control by emergency department nurses. Method: Participants were 190 nurses working in emergency departments in 14 hospitals located in Busan. Descriptive statistics, t-test, ANOVA, and Pearson's correlation coefficients with SPSS PC+ WIN 12.0 were used to analyze the data. Results: There were significant differences in empowerment by years in ED (emergency departments) and position. There was a significant differences in performance of infection control by position. There were significant differences in empowerment by infection control-related characteristics and by regular conference for infection control. There was a significant and positive relationship between empowerment and performance of infection control in ED nurses. Conclusion: The results of this study indicate that improvement in the level of ED nurse's empowerment would lead to an increase in the performances of infection control.

  • PDF

Development of a Sensor System for Real-Time Posture Measurement of Mobile Robots (이동 로봇의 실시간 자세 추정을 위한 센서 시스템의 개발)

  • 이상룡;권승만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2191-2204
    • /
    • 1993
  • A sensor system has been developed to measure the posture(position and orientation) of mobile robots working in industrial environments. The proposed sensor system consists of a CCD camera, retro-reflective landmarks, a strobe unit and an image processing board. The proposed hardware system can be built in economic price compared to commercial vision systems. The system has the capability of measuring the posture of mobile robots within 60 msec when a 386 personal computer is used as the host computer. The experimental results demonstrated a remarkable performance of the proposed sensor system in the posture measurement of mobile robots - the average error in position is less than 3 mm and the average error in orientation is less than 1.5.

A Basic Study of Water Basin Experiment for Underwater Robot with Improving usability (사용자 운용 편의성을 위한 수중로봇 MR-1의 수조실험에 관한 연구)

  • Nam, Keonseok;Ryu, Jedoo;Ha, Kyoungnam
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.1
    • /
    • pp.32-38
    • /
    • 2020
  • This paper describes a method for tracking attitude and position of underwater robots. Underwater work with underwater robots is subject to differences in work efficiency depending on the skill of the operator and the utilization of additional sensors. Therefore, this study developed an underwater robot that can operate autonomously and maintain a certain attitude when working underwater to reduce difference of work efficiency. The developed underwater robot uses 8 thrusters to control 6 degrees of freedom motion, IMU (Inertial Measurement Unit), DVL (Doppler Velocity Log) and PS (Pressure Sensor) to measure attitude and position. In addition, the thruster allocation algorithm was designed to follow the control desired value using 8 thrusters, and the motion control experiments were performed in the engineering water basin using the thruster allocation method.

A constant angle excavation control of excavator's attachment using neural network (신경 회로망을 이용한 유압 굴삭기의 일정각 굴삭 제어)

  • 서삼준;서호준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.151-155
    • /
    • 1996
  • To automate an excavator the control issues resulting from environmental uncertainties must be solved. In particular the interactions between the excavation tool and the excavation environment are dynamic, unstructured and complex. In addition, operating modes of an excavator depend on working conditions, which makes it difficult to derive the exact mathematical model of excavator. Even after the exact mathematical model is established, it is difficult to design of a controller because the system equations are highly nonlinear and the state variable are coupled. The objective of this study is to design a multi-layer neural network which controls the position of excavator's attachment. In this paper, a dynamic controller has been developed based on an error back-propagation(BP) neural network. Computer simulation results demonstrate such powerful characteristics of the proposed controller as adaptation to changing environment, robustness to disturbance and performance improvement with the on-line learning in the position control of excavator attachment.

  • PDF

3-D Positioning Using Stereo Vision and Guide-Mark Pattern For A Quadruped Walking Robot (스테레오 시각 정보를 이용한 4각보행 로보트의 3차원 위치 및 자세 검출)

  • ;;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1188-1200
    • /
    • 1990
  • In this paper, the 3-D positioning problem for a quadruped walking robot is investigated. In order to determine the robot's exterior position and orentation in a worls coordinate system, a stereo 3-D positioning algorithm is proposed. The proposed algorithm uses a Guide-Mark Pattern (GMP) specialy designed for fast and reliable extraction of 3-D robot position information from the uncontrolled working environment. Some experimental results along with error analysis and several means of reducing the effects of vision processing error in the proposed algorithm are disscussed.

  • PDF

Implementation of a 3D Interface System for controlling Mobile Robot (모바일 로봇 제어를 위한 3D 인터페이스 시스템의 구현)

  • Kang, Chang-Hun;Lee, Jong-Jin;Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.107-110
    • /
    • 2001
  • Recently, there are lots of concerning on robot agent system working for itself with the trends of the research of bio-mimetic system and intelligent robot. In this paper, a virtual 3D interface system is proposed based on Internet for remote controlling and monitoring of mobile robot. The proposed system is constructed as manager-agent model. A worker can order the robot agent move to a new position by clicking the destination on virtual space of 3D graphic interface in manager. Then the robot agent move to the position automatically with avoiding collision by using range finding and autonomous control algorithm. The proposed robot agent system lets us control the mobile robot remotely located more conveniently.

  • PDF

Program Development for Vibration Performance Evaluation of Powder Transfer Equipment (분립체 이송장치의 진동 성능평가를 위한 프로그램 개발)

  • Lee Hyoung Woo;Park No Gill
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.170-179
    • /
    • 2004
  • A vibration model of powder transfer equipment is developed by the lumped parameter method. A Powder transfer equipment does surging motion, bouncing motion and pitching motion. Motion equation becomes decoupling and removed vibration exciting source about pitching motion, and therefore designers presented the optimum design plan to be able to do adjustment with motion trajectory of powder transfer equipment. That is, way for design to be able to do motion trajectory of powder transfer equipment through change of design element as installation position and direction of motor, driving speed, mass unbalance, stiffness coefficient and installation position of support coil spring is presented. The design results, powder transfer equipment were able to know that fatigue destruction does not occur, and the reason is because maximum stress working on a basket structure is more very than fatigue strength small.

Design of Inchworm Linear Motor Using Design of Experiment (실험계획법을 이용한 인치웜 리니어 모터의 설계)

  • 예상돈;민병현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1041-1044
    • /
    • 2002
  • Inchworm linear motor is one of the ultra precision position apparatuses and has many kinds of forms and structures according to the conditions of working space and range. In this paper, the Inchworm linear motor consists of three PZTs(Piezo-electric transducer), three columns ma two plates. finite element method was used to determine the type or hinges installed in column of inchworm linear motor DOE(Design of experiment) was used to determine the optimal design condition of a column by comparing the von-mises stresses according to the change of thickness of hinge, round of hinge, height of arm, angle of v-notch, round of v-notch and thickness of column. From the result, round of hinge, height of arm and thickness of hinge were determined a effective design parameters.

  • PDF

Measurement on Perceived Human Body Joints Discomfort in the Standing Posture (선 자세에서의 인체 관절의 지각 불편도 측정)

  • Kee, Do-Hyung
    • IE interfaces
    • /
    • v.10 no.3
    • /
    • pp.197-208
    • /
    • 1997
  • In workplace design, an ergonomic solution should ensure low postural stress in the operator during his/her work. Stress caused by awkward working postures of the trunk, shoulders and legs can result in fatigue, discomfort, musculo-skeletal disorders and nerve entrapment syndromes. Since discomfort and musculo-skeletal disorders are both related to exposure to biomechanical load on the musculo-skeletal system, minimization of discomfort will contribute to reduction of the risk for musculo-skeletal disorders as well. Therefore, in this study, perceived discomfort on the human body joints was measured in the standing postures using the magnitude estimation in order to have a standardized numerical scale for joint discomfort. Nine healthy graduate students participated voluntarily in the laboratory study. The results revealed that perceived discomfort of all the joints increased as the joints deviated from neutral position. Especially, it showed drastic increment on perceived discomfort when deviation from neutral position in each human body joint increased from 75% to 100%. in terms of relative range of motion(R0M). On the basis of these experimental results, a preliminary ranking for assessment of stressfulness of non-neutral postures around the human body joints was suggested.

  • PDF

A Stability Effect of Passive Compliance on Active Compliance Control (수동 Compliance가 능동적 Compliance제어의 안정도에 미치는 영향)

  • Chung, Tae-Sang
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.1
    • /
    • pp.92-106
    • /
    • 1990
  • Active compliance is often used in the control of robot manipulators for the implementation of complex tasks such as assembly, multi-finger fine motion, legged-vehicle adaptive control,etc. This technique balances the interactive force between the manipulator tip and its working environment with its position and velocity errors to achieve the operation of a damped spring. This paper investigates the effecft of passive compliance on system stability with regard to force feedback implementation for actively compliant motion. Usually it is understood that accurate position control require a stiff system. However, theoretical examination of control experiments on a legged suspension vehicle suggests that, if the control includes discrete-time force feedback, some passive compliance is necessssary at the legs of the vehicle for system stability. This can be an important factor to bl considered in manipulator design and control. A theoretical analysis, numerical simulation, and experimental result, confirming the above conclusion, are introduced in this paper.

  • PDF