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A Stability Effect of Passive Compliance on Active
Compliance Control

g & M
(Tae-Sang Chung)

Abstract- Active compliance is often used in the control of robot manipulators for the
implementation of complex tasks such as assembly, multi-finger fine motion, legged-vehicle
adaptive control, etc. This technique balances the interactive force between the manipu-
lator tip and its working environment with its position and velocity errors to achieve the
operation of a damped spring. This paper investigates the effect of passive compliance on
system stability with regard to force feedback implementation for actively campliant motion.
Usually it is understood that accurate position control requires a stiff system. However,
theoretical examination of control experiments.on a legged suspension vehicle suggests that,
if the control includes discrete-time force feedbsck, some passive compliance is necessary at
the legs of the vehicle for system stability. This can be an important factor to be consid-
ered in manipulator design and control. A theoretical analysis, numerical simulation, and

experimental result, confirming the above conclusion, are introduced in this paper.

1. Introduction

When the end effector of a manipulator comes
into contact with its working environment,
compliant motion is requried to control the end
effector position. This is necessary because the
manipulator, itself, is not a perfect positioning
device and becauses the working environment is
not completely known. This is an actively
compliant motion allowing the manipulator to
adapt to its working environment. The interactive
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force between the end effector and the
environment is measured and used in modifying
positional command, usually by a linear gain. A
great deal of previous work has been done in force
and compliance control of robotic systems, and
has been summarized in recent papers.[1-4]

A major research project in legged locomotion,
conducted at the Ohio State University, resulted in
the development of an experimental prototype, the
OSU Hexapod, plus various contro! schemes and
gait selection algorithms for the vehicle.[5, 6] The
vehicle was fully equipped with vector force
sensors at each leg[7] and, for the control of the
vehicle, active compliance[8-10] has been used.
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This technique, which balances forces and position
errors to achieve the operation of damped spring
in Cartesian coordinates, has been derived from
work by Whitney[11] and Hogan[12]. With the
algorithm implementing active compliance, it was
demonstrated that the OSU Hexapod is capable of
walking adaptively over irregular terrain while
maintaining body orientation[10]. Fig.1, is a
photohraph of the OSU Hexapod maneuvering
over an irregular terrain,

However, with force feedback, the OSU
Hexapod experienced unexpected and
theoretically inexplicable oscillations.[13] The
following factors were considered as possible
causes : (1) the force feedback control law itself (2)
force interaction of the legs and (3) passive
compliance in the system. Previously research has
been done for issues (1) and (2) in some degree and
the results have been published[14, 15]. Further
study on issue (1) is presently under progression

[16] for a generalization of the result in[15]. The
major concern of this paper is about the issue (3) :
the effect of passive compliance on system
stability in active compliance control.

It had been believed that one of the reasons for
the Hexapod's oscillation, resulting from force
gains resonable for a single leg, was due to

internal passive compliance in the vehicle, and

Fig. 1 The Ohio State University Hexapod
vehicle maneuvering over an irregular
terrain. Note that a spring block was
attached at the foot-tip of each leg to
decrease vertical stiffness of the vehicle.
The spring constant is approximately 41,
900[N/m].
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interaction in force between legs{10]. Thus a
digital low-pass filter on the force error_ had been
used to damp out leg interactions in force. A pole
of 2.0{rad/sec] was Chosen empirically for the
low-pass filter. However, it had not still been
understood whether passive compliance might be
beneficial or detrimental to the stability of force
control for actively compliant motion.

To clarify, experimentally, the confusion about
the effect of passive compliance on system
stability, the Hexapod body first was stiffened
with the attachment of aluminum plates to its
frame. However, the effect turned out to be worse,
with the system showing more oscillation than
before. Thus, as an experimental trial in the
opposite direction, a spring block was attached at
the foot-tip of each leg to decrease vertical
stiffness of the hexapod (see Fig. 1). These blocks
are quite soft and thus are major sources of
vertical compliance of the vehicle. Experiments
with these spring blocks at the foot tips showed
increased system stability. The experimental
results will be discussed fully in Section IV.

From. the experiments performed on the OSU
Hexapod, it was found that passive compliance
bears a significant importance in system stability
with regard to force control. The purpose of this
paper is to investigate, theoretically, the effect of
passive compliance on sytem sta‘f)lilty with regard
to force feedback implementation for actively
compliant motion. A theoretical- analysis,
numerical simulation, and experimental result will
be introduced in the following sections : In Section
I, a model of one dimensional suspension system
with passive compliance ard active compliance
control will be proposed. Based on this model, the
effects of passive compliance under continuous
control will be studied by a root locus analysis. In
Section [, the root locus analysis will also be
performed but under discrete control. Then the
difference of the effects of passive compliance
under continuous and discrete controls will be
compared. A numerical simulation for discrete
control will also be included for visualization of
the system response. Section [V discusses
experimental results performed on the OSU
Hexapod to confirm the findings in Section II and

.
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2, Stability Effect of Passive Compliance
Under Continuous Control

Since the action and reaction force results from
interaction between two contacting objects, the

force feedback gain obviously depends on the
characteristics of the two objects, in this case their
stiffness. In order to study the effects of passive
compliance, a one-dimensional suspension model
with passive compliance will be proposed in this
section. Based on it, the effects of both the
continuous control and the discrete control will be
compared.

2.1 Model of An Active Sugpension System

Fig. 2 is a model of the suspension system, with
two legs supporting the mass block of 2M. This
model is a reduced one of the OSU Hexapod. Each
leg consists of two links with an actuator attached
at their joint. Passive compliance sources of the
suspension system and the ground are lumped at
the contact points, as spring constant Ksr and
damping coefficient Bp. In this model the velocity
and position of the mass block are controlled
according to the input command and the force
measured at the foot-tip.

It is assumed that both legs of the model in Fig.
2 are controlled indentically and thus the mass
block moves only vertically, without interactions
between legs. The case of interaction in force

2n

4{{/__/__/_.1_- ______ f ———
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Fig. 2 A model of the vehicle suspension system.
Passive compliance parameters of both
the suspension system and the supporting
ground are lumped at the contact points.
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Fig. 3 One-leg model of the vehicle suspension
system. Passive compliance parameters
of both the suspension system and the
supporting ground are lumped at the
contact point. The motor block controls
the position x,.

between legs was considered in[14]. With this
assumption, the passive compliance model can be
simplified to a single leg model with mass of M

[17] as shown in Fig. 3. This simplification shows
only one leg, which is all that is necessary for the
purpose of stability analysis.

In the system model in Fig. 3, the force measured
at the foot-tip is the gravity and acceleration force
of the mass block. Thus it can be expressed as

F=M(g+is) (1)

This force is exerted on the spring damper block,
with an equal amount of force being reacted upon
by the block. Thus the force f can also be
expressed as

f=Kep[(l+ x1) — x5]+ B 51— %3) o)

Equating right sides of both (1) and (2) then gives
an expression for ¥,:

J'c'az*]lv{KsP[( L+ x1) — x3)
+Be(i1—%3)}—g (3)

For completion of the state equations, the
actuator model of one joint of the OSU Hexapod is
used for realism. Accounting for the linearizing
reference wave form and the high gear reduction
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Fig. 4 A signal flow graph of suspension system control of Fig. 3. Linearization
for x; was applied for 8 near zero. Unlabled arrows imply gain of 1.
The input w=4u%,4 +kexra+ksfs. The sampler is closed in the case

of continuous control.

ratio, a simple linear transfer function from input
voltage for the power control circuitry to the
motor angular position has been identified[18]
as

Os) _ 0.14
9

(s)  s(s+3)

(4)

a formula which has been found to give accurate
predictions of actuator performance. In order to
combine the actuator model into (3), the term x,
can be approximated as

x =00 (5>

by linearizing for 4 near zero.
The control law is based on active compliance
[9], which is a form of resolved motion rate
control.[19]. Thus the control law modifies the
desired velocity of the mass block by force and
position errors. The commanded velocity becomes

751(:xld+kp(x1d—7€m)+kf(fd_fa) (6)

where the terms £, and %, are position and force
gains, respectively. Variables with a subscript 4
represent the desired setpoints, and those with a
represent actual measurements. When the servo
loop is closed with the actual velocity, the error
signal is computed as

45 Compliance?} SE CompllanceI0l9] SHEE0| ojxe g

V= Gx[kv()fxd_ x'la) ‘ka(?ﬂd".’ha)
+ ke fa—fa)] (7)

where (G, is a compensator gain and kg, is a
velocity gain.

By combinig (3) and (5) on the actuator model in
(4) and the control law in (7), a signal flow graph is
obtained, as shown in Fig. 4, The feedforward gain
G is 0.14 G,. Based on this signal flow graph and
the state variables assigned, state equations can
then be obtained as follows:

X1= X2 (8)

Xo= — G(KP+kkaP)x1
—[GQ+ ksBp) +3]x2
+ ks Kspxst keBrxs
+ G[kffd+kude+kszd]
+ GkrKsple, 9)
X3=2X4, (10)

_ B, Ko
Mx4+ M

x1+ X3

lz‘_g (11)

2.2. Root Locus Analysis for Continuous Control
The 4x4 system matrix is formulated by the
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Table 1 Parameter Values for Computer Simulation of A One-Leg Suspension System

body mass

gravitational acceleration
position error gains

velocity error gains

force error gains
compensator gain

passive spring constants
passive damping coefficients
smapling time

M 640Kg

g 9.8m/sec®

ko 1.17 sec™!

ko 1.0

ks 8.35% 10~ *(m/sec)/N

G 7.924 volts/(rad/sec)
Ksp varing, N/m

By 870 and 3,670N/(m/sec)
T varying, sec

Jw

oY

sp T

Ksp

-

Fig. 5 Loci of eigenvalues of the system matrix for the case that the
passive damping coefficient B, is greater than the active one

kol Ry
constant K.

coefficients of state variables in the right sides of
(8) through (11). The eigenvalues of this matrix can
then be obtained numerically, with wvarious
conditions of passive compliance, in order to
observe the effect of passive compliance on system
stability. The loci of eigenvalues are drawn in Fig.
5, varying the passive spring constant K, and
setting the passive damping coefficient B, at a
value greater than the active one, k,/k,. The
parameters used were tabulated in Table 1. The
loci in Fig. 6 represent the case where the passive
damping coefficient is less than the active one. If
the passive spring constant is increased (the
system becomes stiffer), two loci branch away in
both directions parallel to the imaginary axis,

96

The loci were drawn by varying the passive spring

meaning that the system responses have higher
frequency oscillations but with the same damping
the of
eigenvalues are in the left half of the s-plane. Since

envelop. In all cases, however, loci
the real parts of eigenvalues are negative, the
system will be stable for all values of spring
constant K, if continuous control is performed.
An effect of the damping coefficient to the
system response can be pointed out by comparing
Fig. 5 and Fig. 6. Notice that decreasing the pasive
damping coefficient B, pushes the two root loci
which are parallel to the imaginary axis toward
the imaginary axis. Thus, decreasing the passive
damping coefficient also decreases the damping of
the oscillatory response corresponding to the non-
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Fig. 6 Loci of eignevalues of the system matrix for the case of Bp,<k,/ ks
The loci were drawn by varying the passive spring constant K.

b
1]

x1

Fig. 7 A signal flow graph of a reduced model of the suspension system in
Fig.3. The sampler is closed in the case of continuous control.

dominant complex conjugate pole pair. However
the frequency of the oscillation is affected only by

the passive spring constant.

In order to understand more simply the effects
of passive compliance on system stability in case
of continuous control and to compare it to that in
case of discrete control, a gross simplification is
made, reducing the system order. Assumptions for
this are as follows:

(a) xs=constnat

(b) BP:O

{c) k=0
Condition (a) implies that the mass block is fixed
relative to the supporting ground. This is for the

& Compliance’t SE3 C Hoje| tHzof oiXfes Y

case that the manipulator contacts its working
environment with its base being fixed on the
ground. Although the conditipn (b) is the extreme
case on B,, it is not the direct cause of the system
instability. This is because that the damping of the
system response does not become zero by this
condition, since there is also electrical damping
factor in the system such as the motor back emf.
This condition only helps the stability effect of the
passive spring constant be observed easily.
Assumption (c) is only for simplicity. The
following analysis would also be valid without
assumptions (b) and (c) ; the only difference being
that the related equations would be much more
complex.
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Fig.7 is a signal flow graph for the reduced
model. The ruduced-order state equations are then

[;;]:[—G(kpikasp) —13]&]

+ [ G u+2stpxe)] (12)

where x,=x;— [»=constant. The system matrix A

is obtained as

0 1
A_[—G(/ep+kf1<sp) —3] 13)

Thus the characteristic equation is defined from
this matrix as

det(SI_A):SZ+38+ G(kp+kasp):0 (14)

Eigenvalues are the roots of (14), and they
expressed as

_ —3+y9- 4Gk T kKsp)
2

s (15)

If the sign of the discriminant or the term inside
the square root in (15) is positive, i.e.

9> 9—4G(kp+keKsp) >0, (16)

then the system has two real negatve poles. In this
case, the system is stable without any oscillation.
If the discriminant becomes negative with a
change in any one of G, £,, ks, and K, then the
system has poles forming a complex conjugate
pair. In this case the response is a damped
oscillation with the damping envelope of g %2
The radian frequency of the oscillation is

w:\/4G(kp+kasp)_9 (17)

If the spring constant Kj, is increased or the spring
is made stiffer with all the other parameters fixed,
the frequency of oscillation 1is increased,
accordingly, by (17). However, the damping term is
not changed ;thus the system is still stable, if
continuous control is performed. The reduced
model coinciedes with its original in terms of its
stability in passive compliances.

3. Stability Effect of Passive Compliance
Under Discrete Control

It was found that making the system stiffer
causes higher frequency oscillation on the system
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response. However, since the damping term is not
affected much, the oscillation will die out. Thus
the system is stable, under continuocus force
feedback control, even with the variations in
passive compliance. In contrast to this result,
experiments performed on the OSU Hexapod
under discrete control showed that the system
stability is affected by passive compliance
significantly. In regard to discrete control,
Whitney[1, 20] pointed out that higher force
feedback gains can be used if the environment is
more compliant, since less force would build up
over a fixed control time period. In order to verify,
analytically, the experimental results, the state
equations for continuous control will be modified
for discrete control, and a similar stability
analysis will be performed.

3.1 Discrete Model of an Active Suspension
System
The state variables fed back through the digital
computaion loop being regarded as constant input
for a whole interval between two control points,
the following hybrid state equations result from
equations (8) through (11):

A1(8) = x2(1), (18)
Z208) = —3x2(8) — G(kp+ ksKop) %1 (£T)
- G(kv+kap)x2(kT)

+kaspxa(kT) + kath(kT)
+ Glesfatkoiad + koxzal + Gk Ksple, (19)

(1) =xaD), (20)
x= B p )+ BB 1y By
+%12_g (21)

where kT <t<(k+1) T, and f4, %24, and x., are
for t=£kT.

Pure discrete state equations are obtained
through discretization of the above hybrid state
equations. If the above aybrid state equations. If
the about hybrid state equations are in the form

£ (tY=Ax(8)+Bu(t) (22)
with
u(t)=u(kT), for kT<t<(k+1T, (23)
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then their solution is expressed[21] as

x[(k-H)T]:e”x(kT)+f0Te“Bds(kT) (24)

or

[+ V) T)=Gx(kT) + HulkT), (25)
with

G=e'7 (26)
and

H= [ e*Bd.. @7

In this case, the control #(£7) can be computed as
u(kT)=Cx(ET)+ Dv(kT) (28)

with the matrices C and D for the control law and
the variable »(£7T) for external input. Thus the
closed-loop discrete state equation can be
represented as

2[(#+1) T1=[G+HClx(kT)+ HDuv(£T) (29)

If there’is a one-step computation delay in the
feedback loop, the control «(%7) is computed
based on the external input p[(£—1) 7"] and the
state measurement x[(£—1) T]:

w(kT)=Cx[(k—1) T1+Dul(k~1DT].  (30)
Substituting (30) into (25) gives
[+ T1=Gx(£T)+ HCx[(k—1) T]
+HDol(k—1) T]; (31)

thus the state equation can be augmented as

y[(k+1)T]:[IG HC]y(kTH[fD]z(kT)
(32)
with substitutions of
vi(kT)=x:(kT), (33)
Vi-nlRT)=x:{(k—1) T, (34)
and
z(&T)=v[(k—1)T], for i=1--n (35)

3.2 Root Locus Analysis

The stability of the discrete system can be tested
by determining whether the eigenvalues of the
system matrix are within a unit circle on the
z-plane. As shown in (32), the order of the system

+& C 7t 585 C Holel Yol DIHE Y

was doubled with a one-step computation delay in
the feedback loop. Computation delay is typical in
computing-bound control of complex mechanical
systems like multi-legged robot vehicles. However,
for theoretical interest and simplicity of the
analysis, it is assumed here that there is no
computation delay, and the system matrix in (29),
[G+ HC), is used in the followi‘ng root locus
analysis. The effect of computation delay will be
included in the simulation to follow.

The loci of eigenvalues of the discrete system
matrix in (29) are drawn in Fig. 8, varying the
sampling time 7. Keeping T very small, which
almost amounts to continuous control, all the
eigenvalues are within the unit circle. As T is
increased from zero, some loci move toward the
unit circle boundary. When the sampling time 7T is
0.1[5@0], an eigenvalue reaches the unit circle
boundary. A further increase in 7 causes the

814 g- 09 'q~ 001~

SIXV W3y

020

09°0

.16 Dos oo N 016
IMAGINARY AXIS

Fig. 8 Loci of eigenvalues of the system matrix
for the discrete control system. The loci
were drawn by varying the sampling time
7. As T increases some eigenvalues
cross over the unit circle boundary.
resulting in an unstable system.
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Fig. 9 Loci of eigenvalues of the system matrix
for the discrete control system. The loci
were drawn by varying the passive spring
constant K. As K, increases, some
eigenvalues cross over the unit circle
boundary, resulting in an unstable system.

eigenvalue to cross over the unit circle as
expected, resulting the system instatility.

Fig. 9 is the loci of eigenvalues with spring
constant K, only, varing. As K, is increased, a
pair of loci move away from the real axis. This
implies that the frequency of damped oscilation is
accordingly increasing as is the case with
continuous control. A further increase in K
makes some loci cross over the unit circle, making
the system unstable, which is not the case with
continous control. The critical passive spring
constant was Ks,=68,000] N/m] with the discrete
control frequency of 50Hz.

A similar stability test can be accomplished
analytically on a reduced model of discrete
control, as was done in the case of the reduced
model implementing continuous control. For this,
the sampler in Fig.7 samples with a non-zero
sampling and control time 7. When the control
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u(t) is constnat between 0 and 7, When the
control %(¢) is constant between 0 and 7T, x.(¢) is
given by

_ 1—e™™ ~3¢
x2(t)= u(O)'T~*+xz(0)e , (36)
and then x,(¢) is computed as

()= [ wlt) dt+0(0)

_ 3tte—1
= u(0) 9
1—e™™
+x2(0)- 3 +x:(0). (37

Now substituting ¢= T in (36) and (37) gives

_ -3T
() =371
_ 3T
+xz(o>~1—§—+x,<o>, (38)
1—e™ 37
x2( T) = u(O) 3 "‘+Xz(0) e 37, (39\/

When the sampling time 7 is very small, an
approximation of

e?T=1-3T (40)
can be valid. Applying this approximation into (38)
and (39) gives

2i(T)=x:(0) + Tx2(0), (41)

2 T)=(1-3T)x2(0) + Tu(0). (42)
These two equations are generali;ed without any
difficulty, with time index %, as follows:

£ [(B+1) T]=x:(RT) + Tx RT), (43)

%[(k+1D) T]=(1-3T) 2:(kT) + TulkT). (44)

The control u«(£T) is computed from system
input and state feedback, by the designed control
law. Thus state feedback may be delayed, by
computation, in real operation. However, if
computation delay is included, it doubles the
system order, making it hard to handle
analytically. Therefore, for simplicity of analysis,
it is assumed here that there is no computation
delay. The control u(£T) then is expressed as

+EKopxe) (45)

By substituting (45) into (44), final discrete state
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equations are obtained :
0l(k+1) Tl=x:(RT) + TxRT), (46)

2 (k+1) T]=— GT (bpt+ ksKsp) x:(£T)
+(1—=3T7)x:(£T)
+ GT[w(T)+ kKspxel  (47)

The system matrix for state equations of (46) and
(47) 1s defined as
1 T
A= ]
—GT kot kKsp) 1-3T 48)
The characteristic equation is then expressed as
det(zl—A)=2*—(2—-3T)z+(1-37)
+ TzG(kp+kasp):O (49)

The eigenvalues are the roots of (49), and are
expressed as

2 ==

(2=3T)x/(2-3T) —4[(1-3T7) + T*G{lot b,Ksp) ]
2

(50

In order for the system response to be stable and
non-oscillatory, the discriminant(the inside of the
square root in (50)) should be positive and the
eigenvalues in (50) should be in 0< z<1. These
conditions are expressed as follows:

(2=3T7)2—4[(1—3T) + T2G(kpt+ EsKsp) 1 >0,
(51)

0<z<1. (52)

If any one of T, G, k,. kp, and K, is increased
from a certain value satisfying the condition
expressed in both (51) and (52) with remaining
parameters, the conditions of (51) and (52) are
violated. However the system is still stable (with
oscillation) as long as the eigenvalues are within
the unit circle in z-plane. If the parameters listed
are increased further over a certain range, the
eigenvalues are driven out of the unit circle,
resulting in an unstable system. This was not true
with the continuous control case. Notice that in
any case decreasing the control period T makes
the system stable, as in the case of the continous
control system.

It is worthwhile to notice that passive spring
constant K, affects the system stability. Actually,
the product of the force gain £, and the spring

4+ % Compliance?’} 5%% ComplianceX0{e} HE o) ojXle I

constant K acts as a single parameter. This
implies that higher force feedback gain be used if
the system itself, or the environment, is more
compliant : or if K, becomes smaller. If the
system is very stiff (K, is very large), then the
force feedback gain should be decreased so as to
stabilize the system. However this is not
compatible with actively compliant motion.
Although the discussion here does not give any
quantitative suggestions, it clearly explains why
some passive compliance is necessary for stability
in controlling contact force by discrete control.
Since a manipulator usually is hightly non-linear
and its order is high, it may be reasonable to adjust
its passive compliance by empirical menas.

3.3 Numerical Simulation of the Sampled-
Data System

Based on the hybrid state equations (18) through
(21), a numerical simulation was performed with a
step input. Although the vehicle will not
experience a step input in normal walking, its
responses to it will still reveal how system
stability is affected by passive compliance. The
differential equations were numerically integrated
by the Runge-Kutta fourth order technique.[22]
The frequency of numerical integration(reciprocal
of integration interval) was chosen to be an integer
multiple of the control frequency so that no
integration interval crossed a control point.
Parameters tested with each simulation were
sampling time 7 and passive spring constant Kp.

Fig. 10 shows simulation results for various
sampling times. with other parameters fixed. It
clearly shows that, with the sampling time
decreased, oscillation of the response is reduced as
expected. The step response becomes unstable
with the control frequency less that 15[Hz].
However, the analytic test showed that the
minimum control frequency is 10[Hz] when no
computation delay is assumed. Thus, it be
concluded that the computation delay causes a
detrimental effect on the stability.

Fig.11 is another simulation result, varying
spring constant K, only. The control frequency is
fixed around 50Hz, which is a practical value used
for the OSU Hexapod control. As the spring
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Fig. 10 Force responses of the model suspension
system under discrete control.
Simulation was performed with the
passive spring constant being fixed at 69,
900[N/m]. As the sampling time
increases, the response begins
oscillation. The unstable oscillation
begins with a control ferquency of
approximately 14Hz.

constant K, is increased, the response enters into
oscillation. This result corresponds to the stability
analysis given in this section. The simulation
shows that the maximum passive stiffness is
around 69,900[N/m] for the system stability,
which agrees very well with the result of the root
locus analysis given in this section.

4, Experimental Results

It was determined theoretically that some
passive compliance is necessary for system
stability in implementing force control by digital
computer. In this section, the result of the
experiment performed on the OSU Hexapod, will
be presented as confirmation of the validity of the
stability analysis based on the passive spring
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Fig. 11 Force responses of the model suspension
system under discrete control.
Simulation was performed with the
control frequency of 50Hz. As the
passive spring constant increases, the
response begins oscillation. The unstable
oscillation begins with the spring
constant of approximately 69,900[ N/m].

constant and force feedback gain.

For a practical evaluation of the control
algorithm for actively compliant motion,
experiments were performed with the Hexapod
vehicle walking forward with a leg duty factor of
2/3. Under these circumstances, it was judged, the
control system would be activated by a
dynamically changing input, with almoest all the
possible postures of the legs occurring in walking.
The force setpoints were generated based on the
static equilibrium condition of the vehicle.
Generally, the system of equations for force
constraints are underspecified if the vehicle is
supported by more than three legs[7]. Thus there
is an infinite number of solutions. Among many
solution methods based on different optimization
criteria[ 14, 23], the pseudoinverse technique which
gives the minimum norm solution is used for
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Fig. 12 Foot force tracking of leg 1 of the OSU
Hexapod using active compliance. The
vehicle was walked without spring
blocks on each leg. The control
frequency was 50Hz. The foot force
setpoint was generated as the
paseudoinverse solution of the force
constraint equation. The force response
shows undamped large amplitude
gscillation.
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Fig. 13 Foot force tracking of leg 1 of the OSU
Hexapod wusing active compliance
control. The vehicle was walked with
spring blocks on each leg. The spring
constant was approximately 41,900[N/
m). The control frequency was 50Hz.
Comparing with Fig. 12, no significant
large-amplitude oscillation is observed.

experiments in this section.

It had been belived that the Hexapod’s
oscillation with force feedback control, resulting
from force gains reasonable for a single leg, was
due to internal passive compliance in the vehicle,
and interaction in force between legs[10]. To

& Compliance?t S&X ¢ ceX(0o] otF=ol ojHE I#
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Fig. 14 Foot position tracking which
corresponds to the foot force tracking of
Fig. 13. Notice that position errors in
this figure were introduced by active
compliance to counteract the force
errors observed in Fig. 13.

clarify, experimentally, the confusion about the
effect of passive compliance on system stability,
the Hexapod body first was stiffened with the
attachment of aluminum plates to its frame.
However, the effect turned out to be worse, with
the system showing more oscillation than before.
Fig. 12 shows the force responses of the
experiment with the Hexapod body being
stiffened. As plotted in Fig. 12, the force response
with the stiffer system shows undamped large-
amplitude oscillations., The oscillations were so
strong that considerable impact was applied to the
system, causing the vehicle to vibrate as a whole.

In order to decrease vertical stiffness of the
Hexapod and to eliminate a undesirble vibration
experienced with the stiffened system, a spring
bock was deliberately attached at the foot-tip
of each leg(see Fig. 1). These blocks are quite soft
and thus are major sources of vertical compliance
of the vehicle. The spring constant of these bloks
is approximately 41,900[N/m], allowing about 1.
65[cm] compression when half of the vehicle mass
is loaded on one leg. As expected, experiments
with these spring blocks at the foot tips showed
increased system stability. Fig.13 is the force
tracking of the experiment and Fig. 14 is the plot
of the corresponding position tracking. It can be
observed that large discontinuities in force
setpoints existed whenever the support pattern
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was changed. As plotted, the force response of the
passively more compliant system does not show
undamped large-amplitude oscillations anymore
and it tracks the setpoint smoothly.

Although, in general, the actual force tracked
the desired force quite well, even with larger
discontinuities in force setpoints, there exists a
small approximately constnat gap as shown in Fig.
13. The force gap resulted from using an
inaccurate total vehicle weight and an inaccurate
center of gravity in formulating force constraint
equations. Even with these inaccuracies, the gap in
force was compensated by allowing position
errors, as shown in Fig. 14. Thus the existence of
errors can be interpreted as homogeneous
components in stable states of the control system
in terms of position and force.

Another discrepancy in force tracking is
apparent in Fig.13. Note that the actual force
became non-zero before the commanded force
when the legs alternated their phases between
support and transfer. This was caused by the
trajectory of desired force having been generated
according to the leg kinematic cycle phase, not
according to the ground contact of the leg. It can
be observed from Fig.14 that the force
discrepancy was compensated by position errors,
as was programmed by the active compliance
algorithm. With this capability the vehicle can
negotiate with or accommodate itself to irregular
terrains.

The comparison of two experiments with
different passive compliances really confims the
validity of the stability analysis given in previous
sections. Generally passive compliance is
beneficial to the stability of force control for
actively compliant motion, and more specifically
some passive compliance is necessary to make the
system stable when force feedback control is
implemented by a digital computer. It should be
noted, however, that position control is less
accurate with a more compliant system. The
system stability can still be maintained by
reducing force feedback gain instead of making
the system more compliant. However this makes
the system actively stiffer. Thus a criterion must
be determined for optimal setting of the passive
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compliance for trading between position accuracy
and system strability with forge control.

5. Conclusions

The purpose of this paper was primarily to
investigate the effect of passive compliance on
system stability with regard to force feedback
implementation of actively compliant motion. In
order to illustrate the problem a model of an
active suspension system and a continous
controller was presented. Based on this model, the
effect of passive compliance was investigated by
deriving eigenvalues of the system matrix. It was
found that increasing the spring constant of
passive compliance or the force feedback gain also
increases the frequency of oscillation. However
the damping envelope is not affected. Thus system
stability is maintained with a change of passive
compliance or force feedback gain.

In order to determine whether the above was
true with discrete control, a time-sampled model
of a control system, based on the model of a
continuous control system, was derived. Both
analysis and simulation were performed on this
model in order to investigatie system stability. In
contrast to the case of continuous control, it was
found that the system stability is closely related to
the product of force feedback gain, the passive
spring constant, and the square ¢’ the sampling
time. When this product term increases, the system
becomes unstable. In any case, the system can be
made stable by decreasing the sampling time,
which makes it act more nearly as a continuous
system. This result also has been shown by
experiments on the OSU Hexapod. Another
noticeable point is that the computational delay
causes a detrimental effect on the system stability.
When there is a computational delay, the system
must be controlled with a somewhat higher
frequency than for the case of no computation
delay.

In summary, it can be concluded that in
implementing actively compliant motion by force
feedback with discrete control, although the
system needs to be stiff for an accurate position
control, some passive compliance is necessarh for
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stabilization of the system. This factor should be
considered in future manipulator design if
compliance motion is intended for the robot
manipulator. Quantitative guidelines are not yet
well established, but should be dependent on the
force feedback gain and the desired accuracy of
position control. Also further research is suggested
for a technique which will dynamically estmate
the total effective passive compliance in the
manipulator and its working environment and
adjust the force feedback gain according to the
estimation, in order not to cause stability problem
but still to achieve a maximal active compliance
effect.
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