• Title/Summary/Keyword: Work process model

Search Result 1,765, Processing Time 0.031 seconds

The Performance Analysis of Otto Cycle Engine by Thermodynamic Second Law (오토 사이클 기관의 열역학 제 2법칙적 성능 해석)

  • 김성수;노승탁
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.94-102
    • /
    • 2001
  • The thermodynamic second law analysis, which means available energy or exergy analysis, for the indicated performance of Otto cycle engine has been carried out. Each operating process of the engine is simplified and modeled into the thermodynamic cycle. The calculation of the lost work and exergy through each process has been done with the thermodynamic relations and experimental data. The experimental data were measured from the test of single cylinder Otto cycle engine which operated at 2500 rpm, WOT(Wide Open Throttle) and MBT(Minimum advanced spark timing for Best Torque) condition with different fuels: gasoline, methanol and mixture of butane-methanol called M90. Experimental data such as cylinder pressure, air and fuel flow rate, exhaust gas temperature, inlet gas temperature and etc. were used for the analysis. The proposed model and procedure of the analysis are verified through the comparison of the work done in the study with experimental results. The calculated results show that the greatest lost work is generated during combustion process. And the lost work during expansion, exhaust, compression and induction process follows in order.

  • PDF

ACTIVITY-BASED STRATEGIC WORK PLANNING AND CREW MANAGEMENT IN CONSTRUCTION: UTILIZATION OF CREWS WITH MULTIPLE SKILL LEVELS

  • Sungjoo Hwang;Moonseo Park;Hyun-Soo Lee;SangHyun Lee;Hyunsoo Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.359-366
    • /
    • 2013
  • Although many research efforts have been conducted to address the effect of crew members' work skills (e.g., technical and planning skills) on work performance (e.g., work duration and quality) in construction projects, the relationship between skill and performance has generated a great deal of controversy in the field of management (Inkpen and Crossan 1995). This controversy can lead to under- or over-estimations of the overall project schedule, and can make it difficult for project managers to implement appropriate managerial policies for enhancing project performance. To address this issue, the following aspects need to be considered: (a) work performances are determined not only by individual-level work skill but also by the group-level work skill affected by work team members, each member's role, and any working behavior pattern; (b) work planning has significant effects on to what extent work skill enhances performance; and (c) different types of activities in construction require different types of work, skill, and team composition. This research, therefore, develops a system dynamics (SD) model to analyze the effects of both individual-and group-level (i.e., multi-level) skill on performances by utilizing the advantages of SD in capturing a feedback process and state changes, especially in human factors (e.g., attitude, ability, and behavior). The model incorporates: (a) a multi-level skill evolution and relevant behavior development mechanism within a work group; (b) the interaction among work planning, a crew's skill-learning, skill manifestation, and performances; and (c) the different work characteristics of each activity. This model can be utilized to implement appropriate work planning (e.g., work scope and work schedule) and crew management policies (e.g., work team composition and decision of each worker's role) with an awareness of crew's skill and work performance. Understanding the different characteristics of each activity can also support project managers in applying strategic work planning and crew management for a corresponding activity, which may enhance each activity's performance, as well as the overall project performance.

  • PDF

A Study on Determine CONWIP(Constant Work In Process) System Model in the Dynamic Environment (동적환경하에서의 CONWIP(Constant Work In Process) 시스템 모델설정에 관한 연구)

  • 송관배;박재현;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.4
    • /
    • pp.209-217
    • /
    • 2003
  • The traditional Kanban needs a lot of preconditions for fitting conditions of dynamic production processing environment. The traditional Kanban isn't suitable conditions of dynamic production processing environment. Therefore conditions of dynamic production processing environment is needed more stable system. This study is describe CONWIP system such as suitable in dynamic production processing environment. Most Pull system is a Kanban system than use Kanban cards or signal for production management and inventory control. The object of Kanban system is reducing inventory between shop-floor that can reduce inventiry cost. If the system reduce the number of Kanban cards would be reduce the working process WIP, can be reduced and can be found all potential problem of production between shop-floors. This study apply to CONWIP system model for Korean industrial companies.

Development of the Design Process for Laser Scanned Model (레이저 스캔 모델의 설계 프로세스 개발)

  • Kim, Chwa-Il;Wang, Se-Myung;Kang, Eui-Chul;Lee, Kwan-Heng
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1029-1034
    • /
    • 2004
  • Recent engineering process requires fast development and manufacturing of the products. This paper mainly discusses the process of rapid product development (RPD) from the reverse engineering to the optimal design. A laser scanning system scans a product and the efficient data processing method reduces the scanned point data. The reduced (scanned) points model is transformed to a finite element model without the construction of a CAD model. Since CAD modeling is a time-consuming work, skipping this step can save much time. This FE model is updated from the result based on the structural characteristics from modal test of the real model. For FE model updating, Response Surface Method is adopted. Finally, the updated FE model is optimized using the reliability-based topology optimization, which is developed recently. All these processes are applied to the design of an upper part model of a cellular phone.

  • PDF

Disjunctive Process Patterns Refinement and Probability Extraction from Workflow Logs

  • Kim, Kyoungsook;Ham, Seonghun;Ahn, Hyun;Kim, Kwanghoon Pio
    • Journal of Internet Computing and Services
    • /
    • v.20 no.3
    • /
    • pp.85-92
    • /
    • 2019
  • In this paper, we extract the quantitative relation data of activities from the workflow event log file recorded in the XES standard format and connect them to rediscover the workflow process model. Extract the workflow process patterns and proportions with the rediscovered model. There are four types of control-flow elements that should be used to extract workflow process patterns and portions with log files: linear (sequential) routing, disjunctive (selective) routing, conjunctive (parallel) routing, and iterative routing patterns. In this paper, we focus on four of the factors, disjunctive routing, and conjunctive path. A framework implemented by the authors' research group extracts and arranges the activity data from the log and converts the iteration of duplicate relationships into a quantitative value. Also, for accurate analysis, a parallel process is recorded in the log file based on execution time, and algorithms for finding and eliminating information distortion are designed and implemented. With these refined data, we rediscover the workflow process model following the relationship between the activities. This series of experiments are conducted using the Large Bank Transaction Process Model provided by 4TU and visualizes the experiment process and results.

Predictive Model of the Intent of Work-Family Multiple-Role Planning among Female University Students: Integration of Social Cognitive Career Theory and Theory of Planned Behavior (여대생의 일가정 다중역할계획의도 예측모형 연구: 사회인지진로이론과 계획행동이론의 통합)

  • Kim, Jieun;Park, Mee Sok
    • Human Ecology Research
    • /
    • v.58 no.4
    • /
    • pp.539-560
    • /
    • 2020
  • This study presents work-family multiple-role planning by female university students as a new approach to worklife balance. Accordingly, this study examines university years as a key time frame during which students establish their career paths. This study integrates the social cognitive career theory and the planned behavior theory to design and evaluate a model that explains the work-family multiple-role planning process; in addition, it develops an optimal model to predict the intentions of female university students in work-family multiple-role planning. This study has conducted a structural survey with 500 female university students. After inspecting the data, the responses of 435 participants were used in the data analysis (SEM) with SPSS 21.0 and AMOS 21.0. The findings include the following. First, suitability of predictive model presents a satisfying fit. The major factors in this study's model (parental support, subjective norms, attitudes toward multiple-role planning, career decision self-efficacy, and outcome expectations) are verified as direct and indirect predictors of the work-family multiple-role planning intent of female university students. Second, the strongest predictive factor for the work-family multiple-role planning intent is the social environment factor (subjective norms), indicating that the influence of social pressure on intent is relatively large. The predictive model formulated under this study's integrated theoretical framework supplements existing research that focused on attitudes toward multiple-role planning as well as provides a more profound theoretical foundation on which work-family multiple-role planning behaviors can be better understood.

A Study on Product Quality Improvement by Regression Modeling of Mini-Mill Process (미니밀 공정의 회귀식 모델링에 의한 제품품질향상에 관한 연구)

  • Lee, Myung-Hak;Ha, Sung-Do
    • IE interfaces
    • /
    • v.12 no.1
    • /
    • pp.150-157
    • /
    • 1999
  • Mini-Mill process has been recently in operation at Pohang steel company, which enables more flexible steel coil production on customer demands. The effects of process parameters in Mini-Mill process need to be analyzed not only to make the process stable but also to improve product quality. This work aims to develop a regression model of Mini-Mill process using accumulated product data such that the process parameter effects on product tensile strength may be analyzed. The analysis shows that tensile strength is influenced mainly by the amount of components such as carbon, manganese, silicon, and sulfur. The effect of temperature is shown to be small. It is concluded that control of the components is much more responsible for both meeting the target and reducing the variation of the product tensile strength. Heat treatment is more useful in compensating tensile strength variations due to thickness differences and improving workability and other quality characteristics. More work is necessary for establishing regression expressions of the process that is reliable and accurate enough to dispense with the off-line inspection of the product tensile strength.

  • PDF

Multistage Fuzzy Production Systems Modeling and Approximate Reasoning Based on Fuzzy Petri Nets (다단계 퍼지추론 시스템의 퍼지 페트리네트 모델링과 근사추론)

  • 전명근
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.84-94
    • /
    • 1996
  • In this work, a fuzzy petri net model for modeling a general form of fuzzy production system which consists of chaining fuzzy production rules and so requires multistage reasoning process is presented. For the obtained fuzzy petri net model, the net will be transformed into some matrices, and also be systematically led to an algebraic form of a state equation. Since it is fond that the approximate reasoning process in fuzzy systems corresponds to the dynamic behavior of the fuzzy petri net, it is further shown that the multistage reasoning process can be carried out by executing the state equation.

  • PDF

Finite Element Modeling of Fracture Process Zone in Concrete (콘크리트 파괴진행영역의 유한요소모델링)

  • 송하원;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.35-41
    • /
    • 1995
  • Fracture Mechanics does work for concrete, provided that a finite nonlinear zone at fracture front is being considered. The development of model for fracture process zone is most important to describe fracture phenomena in concrete. The fracture process zone is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important rules. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominant mechanism governing the fracture process of concrete. In this paper the bridging zone, which is a part of extended macrocrack with stresses transmitted by aggregates in concrete, is model led by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the model of fracture process zone in concrete.

  • PDF

Finite Element Analysis of Tempearture and Thermal Struess of Work Roll in Hot Strip Rolling (유한요소법을 이용한 열연중 워크롤의 온도 및 열응력)

  • 손성강;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.231-235
    • /
    • 1999
  • An integrated finite element-based model is presented for the prediction of the three dimensional, transient thermo-mechanical behavior of the work roll in hot strip rolling. The model is comprised of basic finite element models which are incorporated into an iterative solution procedure to deal with the interdependence between the thermo-mechanical behavior of the strip and that of work roll, which arises from roll-strip contact, as well as with the interdependence between the thermal and mechanical behavior. Demonstrated is the capability of the model to reveal the detailed aspects of the thermo-mechanical behavior and to reflect the effect of various process parameters.

  • PDF