• Title/Summary/Keyword: Word learning system

Search Result 204, Processing Time 0.027 seconds

Inverse Document Frequency-Based Word Embedding of Unseen Words for Question Answering Systems (질의응답 시스템에서 처음 보는 단어의 역문헌빈도 기반 단어 임베딩 기법)

  • Lee, Wooin;Song, Gwangho;Shim, Kyuseok
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.902-909
    • /
    • 2016
  • Question answering system (QA system) is a system that finds an actual answer to the question posed by a user, whereas a typical search engine would only find the links to the relevant documents. Recent works related to the open domain QA systems are receiving much attention in the fields of natural language processing, artificial intelligence, and data mining. However, the prior works on QA systems simply replace all words that are not in the training data with a single token, even though such unseen words are likely to play crucial roles in differentiating the candidate answers from the actual answers. In this paper, we propose a method to compute vectors of such unseen words by taking into account the context in which the words have occurred. Next, we also propose a model which utilizes inverse document frequencies (IDF) to efficiently process unseen words by expanding the system's vocabulary. Finally, we validate that the proposed method and model improve the performance of a QA system through experiments.

English Conversation System Using Artificial Intelligent of based on Virtual Reality (가상현실 기반의 인공지능 영어회화 시스템)

  • Cheon, EunYoung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.55-61
    • /
    • 2019
  • In order to realize foreign language education, various existing educational media have been provided, but there are disadvantages in that the cost of the parish and the media program is high and the real-time responsiveness is poor. In this paper, we propose an artificial intelligence English conversation system based on VR and speech recognition. We used Google CardBoard VR and Google Speech API to build the system and developed artificial intelligence algorithms for providing virtual reality environment and talking. In the proposed speech recognition server system, the sentences spoken by the user can be divided into word units and compared with the data words stored in the database to provide the highest probability. Users can communicate with and respond to people in virtual reality. The function provided by the conversation is independent of the contextual conversations and themes, and the conversations with the AI assistant are implemented in real time so that the user system can be checked in real time. It is expected to contribute to the expansion of virtual education contents service related to the Fourth Industrial Revolution through the system combining the virtual reality and the voice recognition function proposed in this paper.

Detecting Weak Signals for Carbon Neutrality Technology using Text Mining of Web News (탄소중립 기술의 미래신호 탐색연구: 국내 뉴스 기사 텍스트데이터를 중심으로)

  • Jisong Jeong;Seungkook Roh
    • Journal of Industrial Convergence
    • /
    • v.21 no.5
    • /
    • pp.1-13
    • /
    • 2023
  • Carbon neutrality is the concept of reducing greenhouse gases emitted by human activities and making actual emissions zero through removal of remaining gases. It is also called "Net-Zero" and "carbon zero". Korea has declared a "2050 Carbon Neutrality policy" to cope with the climate change crisis. Various carbon reduction legislative processes are underway. Since carbon neutrality requires changes in industrial technology, it is important to prepare a system for carbon zero. This paper aims to understand the status and trends of global carbon neutrality technology. Therefore, ROK's web platform "www.naver.com." was selected as the data collection scope. Korean online articles related to carbon neutrality were collected. Carbon neutrality technology trends were analyzed by future signal methodology and Word2Vec algorithm which is a neural network deep learning technology. As a result, technology advancement in the steel and petrochemical sectors, which are carbon over-release industries, was required. Investment feasibility in the electric vehicle sector and technology advancement were on the rise. It seems that the government's support for carbon neutrality and the creation of global technology infrastructure should be supported. In addition, it is urgent to cultivate human resources, and possible to confirm the need to prepare support policies for carbon neutrality.

A Study on Genetically Optimized Fuzzy Set-based Polynomial Neural Networks (진화이론을 이용한 최적화 Fuzzy Set-based Polynomial Neural Networks에 관한 연구)

  • Rho, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.346-348
    • /
    • 2004
  • In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.

  • PDF

A Probabilistic Context Sensitive Rewriting Method for Effective Transliteration Variants Generation (효과적인 외래어 이형태 생성을 위한 확률 문맥 의존 치환 방법)

  • Lee, Jae-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.2
    • /
    • pp.73-83
    • /
    • 2007
  • An information retrieval system, using exact match, needs preprocessing or query expansion to generate transliteration variants in order to search foreign word transliteration variants in the documents. This paper proposes an effective method to generate other transliteration variants from a given transliteration. Because simple rewriting of confused characters produces too many false variants, the proposed method controls the generation priority by learning confusion patterns from real uses and calculating their probability. Especially, the left and right context of a pattern is considered, and local rewriting probability and global rewriting probability are calculated to produce more probable variants in earlier stage. The experimental result showed that the method was very effective by showing more than 80% recall with top 20 generations for a transliteration variants set collected from KT SET 2.0.

Spam-mail Filtering based on Lexical Information and Thesaurus (어휘정보와 시소러스에 기반한 스팸메일 필터링)

  • Kang Shin-Jae;Kim Jong-Wan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.1
    • /
    • pp.13-20
    • /
    • 2006
  • In this paper, we constructed a spam-mail filtering system based on the lexical and conceptual information. There are two kinds of information that can distinguish the spam mail from the legitimate mil. The definite information is the mail sender's information, URL, a certain spam keyword list, and the less definite information is the word lists and concept codes extracted from the mail body. We first classified the spam mail by using the definite information, and then used the less definite information. We used the lexical information and concept codes contained in the email body for SVM learning. According to our results the spam precision was increased if more lexical information was used as features, and the spam recall was increased when the concept codes were included in features as well.

  • PDF

Design and Implementation a English-Word Learning System using relationship between words (단어간의 관계를 이용한 영어 단어 학습시스템 설계)

  • Bae, Si-Yeong;Gao, Li;Lee, Sung-Keun;Koh, Jin-Gwang;Lee, Hyun-Chang;Choi, Hyun-Ho
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.19-21
    • /
    • 2010
  • 컴퓨터 성능의 급속한 발전으로 언어 학습에 컴퓨터를 이용하려는 시도는 이제 새로운 언어 교수법 차원으로 발전하는 실정이다. 이에 따라 컴퓨터를 이용한 학습이 더욱 강조되면서, 많은 학습 프로그램이 개발되고 있다. 그러나, 기존 영어 단어 학습 시스템은 학습자에게 지나치게 많은 단어들을 단순한 방법을 통해서 학습하게 함으로써 심리적 부담을 주고 있다. 심리언어학에서는 언어 이해의 과정이 단순히 제시된 것을 그대로 받아들이는 수용의 과정이 아니라 학습자가 이미 보유한 경험과 개념을 근거로 활성망의 확산을 통해 적절한 관계를 찾는 역동적 능동적 과정이라는 이론이 있다. 본 논문에서는 언어 학습 이론을 바탕으로 단어들 사이의 관계를 부각시킴으로써 추론과 기억에 도움을 주는 영어 단어 학습 시스템을 제안한다. 본 시스템은 단어들 간의 관계를 정의한 단어 관계 망을 중심으로 단어 학습 순서를 결정할 수 있고, 이미지 및 게임 기능을 지원하여 단어학습의 흥미를 유발하는 특징이 있다.

  • PDF

Improving methods for normalizing biomedical text entities with concepts from an ontology with (almost) no training data at BLAH5 the CONTES

  • Ferre, Arnaud;Ba, Mouhamadou;Bossy, Robert
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.20.1-20.5
    • /
    • 2019
  • Entity normalization, or entity linking in the general domain, is an information extraction task that aims to annotate/bind multiple words/expressions in raw text with semantic references, such as concepts of an ontology. An ontology consists minimally of a formally organized vocabulary or hierarchy of terms, which captures knowledge of a domain. Presently, machine-learning methods, often coupled with distributional representations, achieve good performance. However, these require large training datasets, which are not always available, especially for tasks in specialized domains. CONTES (CONcept-TErm System) is a supervised method that addresses entity normalization with ontology concepts using small training datasets. CONTES has some limitations, such as it does not scale well with very large ontologies, it tends to overgeneralize predictions, and it lacks valid representations for the out-of-vocabulary words. Here, we propose to assess different methods to reduce the dimensionality in the representation of the ontology. We also propose to calibrate parameters in order to make the predictions more accurate, and to address the problem of out-of-vocabulary words, with a specific method.

A Study on Text Mining Analysis of Presidential Maritime Concept in KOREA (텍스트마이닝을 이용한 한국 대통령의 해양관에 관한 연구)

  • Kim, Sung-Kuk;Lee, Tae-Hwee
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.3
    • /
    • pp.39-54
    • /
    • 2020
  • In the presidential political system, the word of the president has great influence on the formation of national policy and the decision-making process. Policy priorities are determined according to the president's ideology and core values, and various policies are established and executed according to the priorities. Therefore, this paper analyzes the contents of the president's speech. Since the president's speech is a semantic datum, in order to analyze unstructured text, big data analysis is conducted through the methods of machine learning and deep learning. In this study, the president's speech at the "National Sea Day" commemoration was obtained 1996 onwards and analyzed using topic modeling. As a result of the analysis, all the presidents' speeches were delivered with a view of the ocean that was consistent with the direction of their administration. It was confirmed that the ocean-industry-resource topics, which are the intrinsic values of the ocean, were not damaged and consistently emphasized by all presidents.

Development of Quality Assurance Model and Guiding Principles for Effective Cyber Education (가상원격교육체제의 질 관리를 위한 평가모형의 개발)

  • Ahn, Mi-Lee;Kim, Mi-Ryang
    • The Journal of Korean Association of Computer Education
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • Internet accelerates the speed of Information society causing changes the method and purpose of education. The word "life-long learning" is no longer a new tenn for many of the world citizens, and they ask for a system to fulfill their need to learn. Information communication technology enables and provides technical base for such needs. Web based cyber education, especially, is known to be an important and alternative instructional method to mediate learning at a distance. At the present, however, with the breakneck pace of growth and interests on Web-based distance education, there are no guidelines provided to assure the quality. In this study, we have identified guiding principles to design and develop quality assurance model for effective distance education. This is critical, especially in Korea, since 9 distance. education institutions have been accredited to offer degree programs starting 2001 spring semester. Using this model, distance education providers and consumers can develop or select effective on-line courses.

  • PDF