본 연구의 목적은 빅데이터 분석기법을 활용하여 공유경제 관련 국내 학술연구 동향을 탐색하기 위해 내용분석 관점에서 종합적 메타스터디를 수행하는데 있다. 종합적 메타분석 연구방법론은 일련의 전체 연구결과물들을 역사적으로 그리고 포괄적으로 살펴봄으로써 전체 연구동향의 규칙성이나 특성을 조명하여, 이를 통해 향후 연구에 대해 방향성을 제시할 수 있다. 공유경제를 주제로 하는 국내 학술연구는 Lawrence Lessig 교수가 2008년에 공유경제의 개념을 세상에 소개한 해에 등장하였으나, 본격적인 연구는 2013년부터 진행되었다. 특히, 2006~2008년 사이에 국내 공유경제 관련 학술연구는 양적으로 급격히 증가하였다. 본 연구는 2013년부터 현재까지 약 8년간의 논문들을 분석 논문으로 선정하고, 전자저널의 학술논문검색 및 원문서비스를 이용하여 제목, 키워드, 초록을 중심으로 텍스트 데이터를 수집하였다. 수집된 데이터를 정제, 분석, 시각화의 순서로 빅데이터 분석을 실시하여, 추출된 핵심어들을 통해 연도별 및 문헌 유형별 연구동향 및 인사이트를 도출하였다. 데이터 전처리 및 텍스트 마이닝, 메트릭스 빈도분석을 위해 Python3.7과 Textom 분석도구를 활용하였고, 핵심어 노드 간의 구조적 연관성을 파악하기 위해 UCINET6/NetDraw, Textom 프로그램 기반의 N-gram 차트, 중심성 및 소셜네트워크 분석, 그리고 CONCOR 클러스터링 시각화를 통해 8개로 군집화 한 키워드들을 토대로 연구동향의 유형별 특성을 발견하였다. 아직까지 사회과학적 관점에서 공유경제 관련 학술연구 동향에 관한 조사가 이루어진 바가 없기 때문에, 본 연구의 결과물은 선행연구로서 후속 연구들에게 이론적 고찰 및 향후 연구방향에 대해 유용한 정보를 제공하는 초석의 역할을 기대할 수 있다.
최근 지식재산권의 모방과 권리 침해는 국가 산업발전의 저해요소로 인식되고 있다. 많은 연구자들은 이러한 저해요소로 인하여 발생하는 막대한 손실을 막기 위해 지식재산권의 보호와 효율적 관리에 관한 연구를 다양하게 진행 중이다. 특히, 특허 등록 예측은 지식재산권 보호와 권리 주장을 위해 매우 중요한 연구이다. 본 연구는 텍스트 마이닝 기법을 이용한 특허문서 분석을 통하여 특허 등록 및 거절 여부를 예측하는 방법을 제안한다. 먼저 거절된 특허문서들의 단어 빈도수를 이용하여 데이터베이스를 생성한다. 그리고 생성한 데이터베이스와 다른 특허문서들을 비교하여 각 문서와 데이터베이스와의 유사한 정도를 판단하는 유사치를 도출한다. 본 논문에서는 특허 거절 기준 값을 선정하기 위하여 분할 군집화 알고리즘인 k-means 사용하였다. 그 결과로 거절된 특허 문서와 유사한 특허 문서는 거절될 가능성이 높다는 결론을 얻을 수 있었다. 실험을 위한 데이터는 현재 미국에 출원되어 있는 블루투스 기술, 태양전지 기술 그리고 디스플레이에 관한 특허 문서를 이용하였다.
본 논문에서는 HM-Net (Hidden Markov Network)을 다양한 태스크에의 적용과 화자의 특성을 효과적으로 나타내기 위해 HM-Net 음성인식 시스템에 MLLR (Maximum Likelihood Linear Regression) 적응방법을 도입하였으며, HM-Net 학습 알고리즘을 개량하여 회귀클래스 생성방법을 제안한다. 제안방법은 PDT-SSS (Phonetic Decision Tree-based Successive State Splitting)알고리즘의 문맥방향 상태분할에 의한 상태레벨 공유를 이용한 방법이다. 즉, 문맥방향의 각 상태에 적응화자 음성데이터에 포함된 문맥정보를 분할하여 적응화될 음소환경을 결정하는 것이다. 따라서 제안방법은 새로운 화자로부터 문맥정보와 적응화 데이터의 발성 양에 의존하여 결정된 많은 적응 파라미터들을 (평균, 분산) 자유롭게 제어할 수 있게 된다. 제안방법의 유효성을 확인하기 위해 국어공학센터 (KLE) 452 데이터와 항공편 예약관련 (YNU200) 연속음성을 대상으로 인식실험을 수행한 결과, 음소인식, 단어인식, 연속음성인식에 대해서, 평균 34∼37%, 평균 9%, 평균 20%의 성능 향상을 각각 보였다. 또한 적응화 데이터의 양에 따른 인식성능 비교에서 제안방법을 적용한 인식 시스템이 적응 데이터의 양이 적은 경우에도 향상된 인식률을 보여 MLLR 적응방법의 특성을 만족하였다. 따라서 MLLR 적응방법을 도입한 HM-Net 음성인식 시스템에 제안한 회귀클래스 생성방법이 유효함을 확인할 수 있었다.
최근 인터넷을 이용한 분산처리와 멀티미디어에 대한 연구가 활성화됨에 따라 일반 사용자에 대한 비디오 컨텐츠의 원활한 제공과 편리한 검색방법이 절실히 요구되고 있는 실정이다. 따라서 본 논문에서는 클립단위의 대표프레임 추출로 인한 비디오 인덱싱 정보를 활용함으로써 실시간으로 비디오 검색 시스템을 지원하는 웹 서비스 시스템을 설계 및 구현한다. 구현된 시스템은 비디오 컨텐츠 제공자의 원활한 서비스를 지원하는 내용기반 인덱싱 시스템과 사용자의 다양한 검색을 지원하는 웹 기반 검색 시스템으로 구성되어있다. 기존의 데이타 순차처리 검색시스템과 달리 인덱싱 시스템은 비디오 분할에 의한 대표 프레임 추출과 연관된 정보의 클러스터링에 의한 클립 과일생성 및 클립단위의 비디오 데이타베이스 구축 방법으로 이루어진다. 대표프레임 추출은 프레임 조정방식과 화질 고정방식을 동시에 채택하여 적용함으로써 고화질이 보장되는 전송환경과 느린 회선에서도 끊김없이 안정적인 스트리밍 서비스를 제공받을 수 있도록 한다. 또한 클립단위로 이루어진 비디오 인덱싱 정보의 검색 시스템은 키워드 질의에 의한 검색 방법과 대표 프레임의 2차원 브라우징 방법 및 클립의 내용을 실시간으로 볼 수 있는 방법으로 이루어진다. 결론적으로 본 논문에서 제안한 시스템은 실제 네트워크 환경에서 보다 안정된 스트리밍 서비스를 제공받을 수 있으며, 클립 기반에서 부분적인 비디오 데이타 검색의 편리성을 제공하기 위해 검색 엔진을 범용으로 사용하는 데이타베이스를 이용함으로써 비디오 내용을 쉽게 검색할 수 있도록 해준다.ons), IPSEC(Internet Protocol Security Protocol) 서비스에 추가될 수 있다., tamoxifen(6.3%) 순으로 나타났다. 항에스트로젠제의 생체내 투여는 estrogen 존재 유무에 따라 estrogen 수용체 농도에 agonist 또는 antagonist로 작용하였다. 항에스트로젠제의 단독투여는 progesterone 수용체 생성을 증가시키나, estrogen에 의하여 유도된 progesterone 수용체 생성을 억제하였다. 이상의 결과로 보아, tamoxifen과 LY117018은 estrogen유무에 따라 흰쥐 자궁세포에서 estrogen antagonist로서 뿐만 아니라 agonist로서도 작용함을 알 수 있다. 그러나 estrogen수용체와의 결합능력이 아주 낮은 tamoxifen은, 용량에 비례하여 estrogen수용체에 결합하므로써 작용하는 LY117018과는 다른 기전으로 작용하는 것으로 생각된다.this entire process is pipelined to reduce I/O node contention dynamically. In other words, the design provides support for dynamic contention management. Then we present a software caching method using collective I/O to reduce I/O cost by reusing data already present in the memory of other
피부상태의 진단과 관리는 뷰티산업종사자와 화장품산업종사자에게 그 역할을 수행함에 있어서 매우 기초적이며 중요한 기능이다. 정확한 피부상태 진단과 관리를 위해서는 고객의 피부상태와 요구사항을 잘 파악하는 것이 필요하다. 본 논문에서는 피부상태 진단 및 관리를 위해 소셜미디어의 빅데이터를 사용하여 피부상태 진단 및 관리를 지원하는 빅데이터기반 피부관리정보시스템 SCIS를 개발하였다. 개발된 시스템을 사용하여 텍스트 정보 중심의 피부상태 진단과 관리를 위한 핵심 정보를 분석하고 추출할 수 있다. 본 논문에서 개발된 피부관리정보시스템 SCIS는 빅데이터 수집단계, 텍스트전처리단계, 이미지전처리단계, 텍스트단어분석단계로 구성되어 있다. SCIS는 피부진단 및 관리에 필요한 빅데이터를 수집하고, 텍스트 정보를 대상으로 핵심단어의 단순빈도분석, 상대빈도분석, 동시출현분석, 상관성분석을 통해 핵심단어 및 주제를 추출하였다. 또한 추출된 핵심단어 및 정보를 분석하고 산포도, NetworkX, t-SNE 및 클러스터링 등의 다양한 시각화 처리를 함으로써 피부상태 진단 및 관리에 있어 이를 효율적으로 사용할 수 있도록 하였다.
전 세계적으로 유례없는 Covid-19 팬데믹으로 인해 기업의 비즈니스 방식 및 내용이 크게 변화됐다. 따라서 Covid-19 이후 산업 전반에서 일어나고 있는 혁신 양상을 면밀히 모니터링하고, 이를 바탕으로 미래 비즈니스를 기획/설계하는 것이 산업현장에서 크게 요구되고 있다. 다수 연구에서 펜데믹 이후 비즈니스 동향 분석이 시도됐으나 특정 산업에 국한된 분석을 수행하는 점, 설문 및 문헌 연구 중심으로 수행되어 객관적 데이터의 활용이 부족한 점에서 한계점이 존재하고 있다. 이에 본 연구에서는 글로벌 스타트업 데이터인 Crunchbase를 활용하여 Covid-19 이후 비즈니스 산업의 트렌드를 분석하고자 한다. 트렌드 분석을 위해 Crunchbase에서 2018년부터 2021년까지 2년 단위로 데이터를 수집 및 전처리를 진행하였다. 산업 변화를 확인하기 위해 네트워크 분석, LDA 기반 토픽 분석, Doc2vec 클러스터링 분석을 결합한 접근 방식을 사용하여 비즈니스 콘텐츠의 변화를 분석하였다. 연구 결과 각 분야에서 비대면/온라인 기술들이 훨씬 전문성을 갖추며 성장하고 있으며, 기술융합에 초점을 두고 많은 산업들이 성장하고 있는 것으로 파악되었다. 본 연구는 Covid-19의 영향으로 기업투자자 및 예비 창업자들에게 급속도로 변화하는 산업의 흐름을 파악할 수 있게 하고 투자 의사결정에 많은 도움을 줄 것으로 기대된다.
최근 방송과 통신의 융합으로 TV에 통신이라는 기술이 접목되면서, TV 시청 형태에 많은 변화를 가져왔다. 이러한 형태의 TV 시청 변화는 서비스 선택의 폭을 넓혀주지만 프로그램을 선택을 위해 많은 시간을 투자해야 한다. 이러한 단점을 개선하기 위해서 본 논문에서는 IPTV환경에서 사용자의 다양한 콘텐츠를 제공하는 방송 환경에서 고객의 시청 정보를 바탕으로 고객 사용정보 온톨로지를 구축하고 그에 따라 고객을 k-medoids 방법을 이용해서 클러스터링 한다. 이를 바탕으로 고객이 선호하는 콘텐츠를 추천 하는 방법을 제안하였다. 실험부분에서 본 제안방법의 우수성을 기존의 방법과 비교하여 보여준다.
지능형 전자상거래 검색 엔진에 대한 관심이 커지면서, 검색 상품의 특징을 지능적으로 추출하고 활용하기 위한 연구들이 수행되고 있다. 특히 전자상거래 지능형 검색 엔진에서 상품을 검색 할 때, 제품의 색상은 상품을 묘사하는 중요한 특징 중에 하나이다. 따라서 사용자의 질의에 정확한 응답을 위해서는 사용자가 검색하려는 색상과 그 색상의 동의어 및 유의어에 대한 처리가 필요하다. 기존의 연구들은 색상 특징에 대한 동의어 처리를 주로 사전 방식으로 다뤄왔다. 하지만 이러한 사전방식으로는 사전에 등록되지 않은 색상 용어가 질의에 포함된 경우 처리하지 못하는 한계점을 가지고 있다. 본 연구에서는 기존에 사용하던 방식의 한계점을 극복하기 위하여, 실시간으로 인터넷 검색 엔진을 통해 해당 색상의 RGB 값을 추출한 후 추출된 색상정보를 기반으로 유사한 색상명들을 출력하는 모델을 제안한다. 본 모델은 우선적으로 기본적인 색상 검색을 위해 671개의 색상명과 각 RGB값이 저장된 색상 사전을 구축하였다. 본 연구에서 제시한 모델은 특정 색상을 검색하는 것으로 시작하며, 검색된 색상이 색상 사전 내 존재하는 지 유무를 확인한다. 사전 내에 검색한 색상이 존재한다면, 해당 색상의 RGB 값이 기준 값으로 사용된다. 만일 색상사전 내에 존재하지 않는다면, Google 이미지 검색 결과를 크롤링하여 각 이미지의 특정 영역 내 RGB값들을 군집화하여 구한 평균 RGB값을 검색한 색상의 기준 값으로 한다. 기준 RGB값을 앞서 구축한 색상 사전 내의 모든 색상의 RGB 값들과 비교하여 각 R, G, B 값에 있어서 ${\pm}50$ 내의 색상 목록을 정렬하고, RGB값 간의 유클리디안 거리 유사도를 활용하여 최종적으로 유사한 색 상명들을 출력한다. 제안 방안의 유용성을 평가하기 위해 실험을 진행하였다. 피설문자들이 생각하는 300 개의 색상 이름과 해당 색상 값을 얻어, 본 연구에서 제안한 방안을 포함한 총 네가지 방법을 통해 얻은 RGB 값들과 피설문자가 지정한 RGB값에 대한 비교를 진행했다. 인간의 눈을 반영하는 측정 기준인 CIELAB의 유클리드안거리는 평균 13.85로 색상사전만을 활용한 방안의 30.88, 한글 동의어사전 사이트인 워드넷을 추가로 활용한 방안의 30.38에 비해 비교적 낮은 색상 간의 거리 값을 보였다. 연구에서 제시하는 방안에서 군집화 과정을 제외한 방안의 색 차는 13.88로 군집화 과정이 색 차를 줄여준다는 것을 확인할 수 있었다. 본 연구에서는 기존 동의어 처리 방식인 사전 방식이 지닌 한계에서 벗어나기 위해, 사전 방식에 새로운 색상명에 대한 실시간 동의어 처리 방식을 결합한 RGB값 기반의 새로운 색상 동의어 처리 방안을 제안한다. 본 연구의 결과를 활용하여 전자상거래 검색 시스템의 지능화에 크게 기여할 수 있을 것이다.
본 논문의 목적은 무형문화유산 일반전승자의 역할을 주목하면서, 소셜 네트워크 분석을 활용해 무형문화유산 전승공동체의 연결망과 전승활동에서 발생하는 지식 흐름의 구조적 특징을 분석하는 데 있다. 이러한 연구 목적을 이루기 위해 본 논문에서는 연구 대상을 국가무형문화재 종목들 중에서 일반인의 전승활동이 활발한 '아리랑'으로 선정하였다. 아리랑은 오랜 기간 제도권 밖에서 일반대중 활동을 중심으로 자생적으로 전승되었으며, 2015년에 전문전승자 지정 없이 국가무형문화재로 지정된 최초의 사례이다. 현재 아리랑은 약 60여 종, 3,600여 곡에 이르는 것으로 추정된다. 본 논문에서는 이 중에서 전문전승자와 일반전승자의 상호교류가 활발한 향토민요 '정선아리랑'을 중심으로 연구하였다. 소셜 네트워크 분석은 사람과 사람 사이의 관계를 노드(Node)와 링크(Link)로 모델링하여 수치화 통계화 시각화하여 해석하는 방법을 말한다. 이 방법은 전통적으로 사회학에서 사회조직 및 취약계층을 연구하는 데 꾸준히 활용되었다. 최근에는 문헌정보학, 문화콘텐츠학, 경영학 등과 같은 분야에서 연구경향, 시장동향, 조직관리 등을 연구하는 데 이 방법이 활용되고 있다. 이처럼 여러 학문 분야에서 소셜 네트워크 분석을 이용한 연구가 증가하는 추세지만 문화재 분야에서는 관련 연구를 찾아보기가 어렵다. 소셜 네트워크 분석은 크게 3단계, '연결망 모델링', '데이터 수집', '데이터 분석 및 시각화'로 진행된다. 본 논문에서는 첫 번째, 2017년 기준으로 정선아리랑보존회 회원 전체를 조사 대상으로 선정하여 완전한 연결망으로 모델링하였다. 두 번째, 데이터 수집은 보존회 회원 명부를 확보해 2017년 10월 17일 면대면 조사와 2017년 12월 15일 전화 설문조사를 통해 하였다. 세 번째, 데이터 분석은 Netminer 4.0 프로그램을 이용해 중심성 분석, 구조적 등위성 분석, 커뮤니티 분석 등을 주요 지표로 하였다. 본 논문은 기존에 무형문화유산 계보조사에서 소수 사람들의 구술자료에 의존해 파악하던 방식에서 벗어나 객관적이고 계량적인 방법으로 조사할 수 있는 기반을 제공하였다는 점에서 연구 의의가 있다. 그리고 무형문화유산 전승공동체 구성원들의 관계 및 지식 흐름의 구조를 지식지도(2D Spring Map) 형태로 시각화함으로써 추상적인 내용을 직관적으로 파악할 수 있게 했다는 점에서 의미가 있다.
본 연구는 국내외 프랜차이즈의 해외진출에 대한 연구들을 바탕으로 국제프랜차이징연구의 전체적인 연구체계를 세워보고, 연구체계를 형성하고 있는 연구요인들을 확인하여 각 연구요소별로 이루어지는 연구주제와 내용을 살펴보고, 앞으로의 연구주제들을 제안하고자 한다. 주요한 연구요소들은 국제프랜차이징의 동기 및 환경 요소과 진출의사결정, 국제프랜차이징의 진입양식 및 발전전략, 국제프랜차이징의 운영전략 및 국제프랜차이징의 성과이다. 이외에도 국제프랜차이징 연구에 적용할 수 있는 대리인이론, 자원기반이론, 거래비용이론, 조직학습이론 및 해외진출이론들을 설명하였다. 또한 국제프랜차이징연구에서 보다 중점적으로 개발해야 할 질적, 양적 방법론을 소개하였으며, 마지막으로 국내연구의 동향을 정리하여 추후의 연구방향을 종합적으로 정리하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.