• Title/Summary/Keyword: Woodchip Biomass

Search Result 16, Processing Time 0.028 seconds

Co-Gasification of Woodchip and Plastic Waste for Producing Fuel Gas (연료용 합성가스 생산을 위한 바이오매스와 폐플라스틱의 혼합가스화)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.75-80
    • /
    • 2012
  • Gasification is a therm-chemical conversion process to convert various solid fuels into gaseous fuels under limited supply of oxygen in high temperature environment. Considering current availability of biomass resources in this country, the gasification is more attractive than any other technologies in that the process can accept various combustible solid fuels including plastic wastes. Mixed fuels of biomass and polyethylene pellets were used in gasification experiments in this study in order to assess their potential for synthesis gas production. The results showed that higher reaction temperatures were observed in mixed fuel compared to woodchip experiments. In addition, carbon monoxide, hydrogen, and methane concentrations were increased in the synthesis gas. Heating values of the synthesis gas were also higher than those from woodchip gasification. There are hundred thousand tons of agricultural plastic wastes generated in Korea every year. Co-gasification of biomass and agricultural plastic waste would provide affordable gaseous fuels in rural society.

Case Study and Evaluation of Economic Feasibility of Combined Heat and Power System using Woodchip Biomass (우드칩 바이오매스를 이용한 열병합발전 운영 사례 분석)

  • Suh, Gill Young;Kim, Sung Hyun
    • New & Renewable Energy
    • /
    • v.8 no.4
    • /
    • pp.21-29
    • /
    • 2012
  • The extensible supply of New & Renewable energy resources desperately needs to counter the high dependence on imported energy, recent high oil prices and the Climate Change Conference, and the government has operated the 'Renewable Portfolio Standard' (RPS) as one of the renewable energy policy from 2012. By analyzing the operation case of combined heat and power plant using the woodchip biomass, we drew the price of wood chip fuel, plant capacity factor, electricity selling price, heat selling price and LCOE value. After analyzing the economic feasibility of 3MWe combined heat and power plant based on the operating performance, the minimum of economic feasibility has appeared to be secured according to the internal rate of return (IRR) is 6.34% and the net present value (NPV) is 3.6 billion won as of 20 years life time after installation, and after analyzing the cases of the economic feasibility of the price of wood chip, plant capacity factor, electricity and heat selling price are changed, the economic feasibility is valuable when the price of wood chip is over 64,000 won/ton, NPV is minus, and the capacity factor is above 46.9%, the electricity selling price is 116 won/kWh and the heat selling price is above 75,600 won/Gcal. When going over the new installation hereafter, we need the detailed review of the woodchip storage and woodchip feeding system rather than the steam-turbine and boiler which have been inspected many times, the reason why is it's hard to secure the suitable quality (constant size) of woodchip by the lack of understanding about it as a fuel because of the domestic poor condition and the calorific value of woodchip is seriously volatile compared with other fuels.

Measurement of Efficiency and Flue Gas Concentration of 90 kW Woodchip Boiler (90kW급 우드칩 온수 보일러 특성 및 성능 시험)

  • Kang, Sae-Byul;Kim, Jong-Jin;Choi, Kyu-Sung;Lee, Woong-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.194-197
    • /
    • 2008
  • We measured the efficiency and flue gas concentration of a 90kW woodchip boiler which is for heating water of lodging. At nominal operating condition, the fuel, woodchip is fed into the boiler at a rate of 22.6 kg/h. In order to determine the efficiency of the boiler, we measured the water flow rate, woodchip flow rate, heating value and water content of woodchip, temperature of inlet and outlet of heating water. The results of test show that the power output of the woodchip boiler is 90.0 kW(77,400 kcal/h) and the thermal efficiency of the boiler is 88.5%. By using a gas analyser, flue gas concentrations are measured. The results show that O2 in the flue gas is 10.2%, CO concentration is 393 ppm and NOx concentration is 74 ppm.

  • PDF

Experimental Evaluation of Synthesis Gas Production from Air Dried Woodchip (풍건 목편을 이용한 합성가스 생산에 대한 실험적 고찰)

  • Hong, Seong-Gu;Wang, Long
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.17-22
    • /
    • 2011
  • Biomass gasification provides synthesis gas or syngas that can be used for internal combustion engines as fuel or chemical synthesis as feedstock. Among different types of gasifiers, downdraft gasifier can produce relatively clean syngas with lower tar contents. In this study, a downdraft gasifier was fabricated with 150 mm of hearth diameter to gasify woodchip that is commercially available in this country. After drying woodchip to about 20 %, gasification experiments were conducted measuring temperature, pressure, air and gas flow rates. The volumetric concentrations of CO, $H_2$, $CO_2$, $CH_4$ were 10.7~14.5, 16.5~21.4, 12.5~16.6, and 2.3~2.9, respectively. They were overall within the ranges of the results that the previous studies showed. However, CO concentration was relatively lower and H2 was slightly higher than those from other studies. It seemed that water gas shift reaction was occurred due to the moisture in the fuel woodchip. Additional drying process coupled with syngas cooling would be required to improve the overall efficiency and syngas quality.

Stabilization of Heavy Metal (Ni, Cr) in Soil Amended with Biomass Ash (바이오매스 회분 혼합에 따른 토양 내 중금속 (Ni, Cr) 안정화)

  • Kang, Ku;Park, Seong-Jik;Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.3
    • /
    • pp.39-46
    • /
    • 2016
  • This study investigated the potential use and the effectiveness of biomass ashes for the stabilization of heavy metals in soil through a series of experiments. The ashes used for the experiments were obtained from the gasification of biomass including miscanthus and woodchips. The amounts of nickel and chromium released from the soil and ash mixture were analyzed. Chemical analysis showed that the ash contained unburned carbon as well as silica and alkali metals. Miscanthus ashes have C (83.400 %) > Si (9.040 %) > K (3.180 %) > Ca (1.800 %), and woodchip ashes have C (93.800 %) > Ca (2.220 %) > Fe (1.370 %) > K (1.200 %). KSLT and TCLP test results implied that the heavy metal concentrations were below the environmental standards and would not impose the risks. The results also showed that Ni releases were more limited as more ashes were mixed with the soil due to the increases in exchangeable, carbonate, and oxide nikels. Both miscanthus and woodchip ahses were effective in stabilizing nickel and chromium through mixing with the soil. It could be seen that ashes produced from biomass gasification can be used to stabilize the heavy metals in soils.

Effects of Biomass Fuel Conditions on Biomass Ossification (바이오매스 가스화장치를 이용한 합성가스 생산에 있어서 연료조건의 영향)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.63-71
    • /
    • 2006
  • A downdraft gasifier was made of stainless steel for biomass gasification. Internal reactor had a 300 mm diameter and 8 air intakes. Three thermocouples were installed to measure the temperature inside the reactor. Three different biomass fuels were provided in the experiments to find out the effects of fuel conditions on gasification processes; charcoals, woodchips, and mixture of woodchip and charcoals. Two different experiments were conducted fer charcoal experiments, small and larger sizes of charcoal fuels. It took about 10 minutes after ignition to generate combustible producer gas when charcoal was f9d, but 20 or more minutes for woodchips. When the gasification was stabilized, the highest temperature was observed just below the combustion zone. The air flow rate for woodchip experiment was provided at 25% of a stoichiometric requirement of combustion, which was within the range of typical air flow rate fer woody biomass gasification. Carbon monoxide concentrations were also within the values reported in the previous studies, ranging 20 to 30% depending on fuel types. It could be seen that fuel size and heating value were very important parameters in biomass gasification. These parameters should be taken into account in operating and designing biomass gasifiers.

The feasibility analysis for energy utilization of forest biomass (산림 바이오매스의 에너지 활용을 위한 타당성 분석)

  • Kang, Hyeun Koo;Park, Kee Chul;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.7-20
    • /
    • 2014
  • The optimal woodchip production system was developed and the production cost of a forest woodchip fuel was calculated for utilizing the pitch pine, which covers around 480,000ha nationwide. the marginal price of the woodchip fuel considering the factor of supply price, electricity and heat selling price as well as capacity factor were suggested and the economic sensitivity analysis was conducted for various scenario. The most important variable which determine economic feasibility was a fuel cost for the power generation facility. If the electricity price is higher than the current SMP(System Marginal Price) or the capacity factor is higher than 80%, there fully is a benefit to consume the woodchip fuels produced in the suggested production system in this study. In addition, the additional benefit becomes more obvious when considering REC(Renewable Energy Certificate) and CDM(Clean Development Mechanism). Therefore, it is strongly suggested for domestic power generation sector to utilize the forest biomass fuel to achieve the obligatory target of RPS.

A Kinetic Study of Steam Gasification of Woodchip, Sawdust and Lignite (나무칩, 톱밥 바이오매스와 갈탄의 수증기 가스화반응 특성 연구)

  • Kim, Kyungwook;Bungay, Vergel C.;Song, Byungho;Choi, Youngtai;Lee, Jeungwoo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.506-512
    • /
    • 2013
  • Biomass and low-grade coals are known to be better potential sources of energy compared to crude oil and natural gas since these materials are readily available and found to have large reserves, respectively. Gasification of these carbonaceous materials produced syngas for chemical synthesis and power generation. Woodchip, sawdust and lignite were gasified with steam in a thermobalance reactor under atmospheric pressure in order to evaluate their kinetic rate information. The effects of gasification temperature ($600{\sim}900^{\circ}C$) and partial pressure of steam (20~90 kPa) on the gasification rate were investigated. The three different types of gas-solid reaction models were applied to the experimental data to predict the behavior of the gasification reactions. The modified volumetric model predicted the conversion data well, thus the model was used to evaluate kinetic parameters in this study. The observed activation energy of biomass, sawdust and lignite gasification reactions were found to be in reasonable range and their rank was found to be sawdust > woodchip > lignite. The expression of apparent reaction rates for steam gasification of the three solids was proposed to provide basic information on the design of coal gasification processes.

Characteristics of Tar Generation during the interval of Gasification of Woodchip (탈휘발 과정과 촤가스화 과정에서 목질계 바이오매스의 타르발생 특성)

  • Moon, Ji-Hong;Lee, Uen-Do;Ryu, Chang-Kook;Lee, Youn-Man;Bae, Woo-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Biomass gasification is a promising technology in terms of clean energy and flexible options for end use such as heat, steam, electricity, gaseous or liquid fuels. In a gasification process, reduction of tar is very important because it can cause any mechanical problems and small tar implies high energy efficiency. However, generation and conversion mechanisms of tar have not been fully understood due to its complex nature. In this study, characteristics of tar generated from different gasification stages were investigated. Korean pine woodchip was used as feedstock and tar was sampled in a separate way during devolatilization and char gasification stage, investigated. As a result. more various kinds of hydro carbon compounds were identified in the devolatilization stage than char gasification stage because primary tar compounds are released mostly from pyrolysis of cellulose and hemicellulose. When the reaction temperature increased up to $900^{\circ}C$, tar composition becomes simplified into about 10 aromatic compounds mostly with 1-4 rings without substitution up to phenanthrene. The sampled tar in the char gasification stage mostly contains 5-7 simple aromatic compounds.

The Study of Economic Feasibility of Wood Pellet in Domestic Power Plants Sector (국내 발전부문에서의 목재펠릿 경제성 연구)

  • Jeong, Nam-Young;Kim, Lae-Hyun
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.251-257
    • /
    • 2010
  • Korea have a plan to enforce the Renewable Portfolio Standard(RPS) in 2012 for climate change action and effective use of energy but because of lack of renewable energy resources and limits of technology development, it will be hard to fullfill a target for RPS obligation in domestic power generation sector and woodchip biomass cofiring with coal combustion is the one of the alternative methods of the goal. Woodchip biomass cofiring with coal combustion is easy to approach technical design and has competitiveness of $CO_2$ & renewble energy certificate benefit and also has much lower generation cost than any other renewable energy resources. Because of that reason, woodchip biomass cofiring with coal combustion should be needed to fullfill the goal for RPS obligation in domestic power generation sector with midlong-term direction.