• Title/Summary/Keyword: Wood pellet

Search Result 149, Processing Time 0.029 seconds

Performance Test and Flue Gas Characteristics of a 350 kW Wood Pellet Boiler (350 kW(300,000 kcal/h)급 우드 펠렛 보일러 운전 특성 및 성능 평가)

  • Kim, Jong-Jin;Kang, Sae-Byul
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.167-171
    • /
    • 2009
  • We conducted performance test of a 350 kW class wood pellet boiler installed at a dormitory whose total area is $1,354\;m^2$. The maximum heating capacity of the boiler is 350 kW(300,000 kcal/kg). The wood pellet boiler consists of 3 parts; boiler, hot water storage tank and wood pellet storage tank. In testing the boiler, we shut off hot water utility supply and open up floor heating water system in order to measure exact value of the heating output of the wood pellet boiler. To determine the efficiency and heating output of the wood pellet boiler, we measured mass flow rate of wood pellet, the lower heating value(LHV) of the wood pellet, mass flow rate and temperature of water for floor heating and so on. We measured the mass flow rate of fuel, wood pellet with respect to rotational speed of auger, wood pellet feeding screw. We also measured the flue gas concentration of the wood pellet boiler by using a gas analyser. The result shows that the efficiency of the wood pellet boiler is 80.6% based on lower heating value at 124 kW of heating output. At this condition, O2 concentration of the flue gas is 6.0%, CO and NOx concentrations are 85 and 102 ppm.

  • PDF

Prediction for the quantity of wood pellet demand and optimal biomass power generation according to biomass power plant expansion and co-firing plan (바이오매스 발전설비 증설·혼소 계획에 따른 Wood pellet 소요량 예측 및 최적 바이오매스 발전량 연구)

  • kim, Sang-Seon;Lee, Bong-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.818-826
    • /
    • 2017
  • In accordance with the New and Renewable Energy Supply Statistics, biomass power generation has surged since 2013, and use of wood pellet has the most sharply increased, 696Gwh in 2013, 2,764Gwh in 2014 and 2,512Gwh in 2015. Total domestic wood pellet consumption was 1.48million tons in 2015, of which wood pellets consumed for power generation account for about 1.08million tons, about 73%. In this study, we gained the result that the wood pellet would be consumed 2.61million tons in 2020, 6.85million tons in 2025, 11.39million tons in 2030. We also calculated the optimum biomass power generation, on the premise that the power plant co-fire 50% biomass, and the result was that 2.26million tons of wood pellets should be produced domestically in 2021 to operate the present licensed wood pellet power plant from this study.

Characteristics of Charcoal from Wood Pellet (목질펠릿으로 제조한 탄화물의 특성)

  • Han, Gyu-Seong;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.15-21
    • /
    • 2006
  • The objective of this research is to develop the technique for carbonization of wood pellet and analyze a possibility for the utilization of carbonized wood pellet. The properties of wood pellet charcoals, such as density, yield, elemental composition, higher heating value, and methyleneblue adsorption, were analyzed. Wood pellet was made of sawdust of Hyunsasi-poplar, Japanese larch, Korean pine, Korean red pine, and Jolcharn-oak (serrate oak), respectively. The high density charcoal ($0.5{\sim}0.7g/cm^3$) was yielded from densified wood pellet. The carbon contents and calorific values of wood pellet charcoals were increased with the increase of carbonization temperature. The methyleneblue adsorptivity of wood pellet charcoal was similar to that of wood charcoal.

Part Load Performance Characteristics of Domestic Wood Pellet Boiler (가정용 목재 펠릿 보일러에 대한 부분부하 운전 특성)

  • Kang, Sae Byul;Kim, Jong Jin;Kim, Hyouck Ju;Park, Hwa Choon;Choi, Kyu Sung;Sim, Bong Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.103.1-103.1
    • /
    • 2010
  • Recently domestic wood pellet boilers are installed in rural and forestry houses. The fuel price per lower heating value of wood pellet is about 20 % lower than that of heating oil on July 2010. In spite of lower price of wood pellet, a few user of wood pellet boiler complain expensive fuel cost. One of this reason is inaccurate or improper air-fuel ratio setting of wood pellet boiler. O2 concentration of flue gas of domestic wood pellet boiler is about 9.7 % and there are few domestic wood pellet boiler which can control air-fuel ratio automatically. We tested a domestic wood pellet boiler in changing boiler thermal output and air-fuel ratio. The nominal boiler thermal output is 25 kW (21 500 kcal/h). We measured thermal efficiency and flue gas concentrations such as CO and NOx at each boiler thermal load with various air-fuel ratio. The results show that if air flow rate is the same as full load and part load, thermal efficiency of part load of 40 % drops about 7.7 %p compared to boiler full load case.

  • PDF

Study on the Estimation of Proper Compression Ratios for Korean Domestic Wood Species by Single Pellet Press

  • LEE, Hyoung-Woo;KIM, Soon-Bae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.450-457
    • /
    • 2020
  • Single pellet press technology allows for fast, low-cost, and small-scale tests to investigate pelletizing characteristics. We estimated proper compression ratios for five Korean domestic wood species through predicted relationships between pelletizing pressure Px and compression ratio based on experimental data obtained from a single pellet press unit. The pressures required to obtain a 6-mm-diam pellet of density 1200 kg/㎥ were estimated as 111 MPa for Populus davidiana, 133 MPa for Robinia pseudoacacia, 136 MPa for Quercus mongolica, 97 MPa for Pinus densiflora, and 127 MPa for Pinus rigida. On the basis of these pressures, we estimated proper compression ratios to be within the range 7.676-8.410 for these species, and we found the compression ratios needed for hardwood species to be somewhat higher than those needed for softwood species to obtain the pellet density of 1200 kg/㎥.

Development of a High Efficiency Wood Pellet Boiler with Improved Safety (안전성을 고려한 고효율 목재펠릿 보일러 개발)

  • Chung, Chan-Hong;Park, Min-Cheol
    • Journal of Applied Reliability
    • /
    • v.12 no.1
    • /
    • pp.35-46
    • /
    • 2012
  • Wood pellet is one of biomass energy fuels, which is produced by compressing woody biomass such as sawdust, planer shavings, and whole-tree removal or tree tops and branches leftover after logging into cylindrical form. Latterly much attention has been paid to wood pellet boiler which is suitable for use at various scales in domestic and industrial furnaces for heat production to replace conventional fossil fuel energy sources since the use of wood pellet that is carbon neutral can alleviate global warming. This study presents the result of developing a high efficiency wood pellet boiler with 55MJ/h capacity. Efficiency has been improved by using a rotating disk burner with a shorter screw feeder. Special attention has been paid to the improvement of the safety of the wood pellet boiler from backfire by adopting a double protecting system composed of a shutter and an air curtain. The result shows that the efficiencies of the wood pellet boiler are 97.2% and 89.2% based on lower and higher heating values, respectively, at 15.1kW of heating output.

Development of Industrial Wood Pellet Boiler with High Safety (안전성이 높은 산업용 목재펠릿 보일러 개발)

  • Chung, Chan Hong;Park, Min Cheol;Lee, Seong Young
    • Journal of Applied Reliability
    • /
    • v.13 no.1
    • /
    • pp.31-44
    • /
    • 2013
  • Recently, due to the high rise of energy costs and environmental problem issues, much attention has been paid to wood pellets. Wood pellets are produced by compressing woody biomass into cylindrical form. Wood pellets are suitable for use at various scales in industrial furnaces for heat production to replace conventional fossil fuel energy sources since the use of wood pellet that is carbon neutral can alleviate global warming. This study presents the result of developing two industrial wood pellet boilers with high safety having capacities of 290kW and 440kW. Efficiency has been improved by using a rotating screw bar grate burner. Special attention has been paid to the improvement of the safety of the wood pellet boilers from backfire by adopting a triple protecting system composed of a rotary feeder, an air curtain, and a backfire protecting DC-fan.

The Formation Characteristics of Tar, Ash and Clinker due to Combustion of Wood Pellet and Performance Analysis of Wood Pellet Boiler in terms of the Moisture Contents Change of the Wood Pellet (목재펠릿 연소 시 발생하는 타르, 재, 클링커 생성 특성 분석 및 함수율 변화에 따른 목재펠릿보일러의 성능 연구)

  • Euh, Seung Hee;Oh, Kwang Cheol;Oh, Jae Heun;Kim, Dae Hyun
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.211-220
    • /
    • 2014
  • This study reports the formation characteristics of tar, ash and clinker due to a wood pellet grade and the performance analysis of wood pellet boiler in terms of the moisture contents change of the wood pellet. Tar was accumulated on the heating surface according to combustion of wood pellet, the ash was yielded on the floor of combustion chamber in a wood pellet boiler and the clinker was solidified at the burner due to combustion of the 3rd grade wood pellet. Especially, the moisture contents is important factor to define the grade. Wood of logging residues has a non-uniform moisture contents after the field process, yields of tar, ash and clinker are increased in case of combustion due to the high ash contents. For these reasons, emission of harmful compounds in the exhaust gas, decrease of boiler efficiency and the system operating errors are observed. In the performance analysis of wood pellet boiler in terms of the moisture contents change of the 1st grade wood pellet, the boiler efficiency was reduced by 27.08% with 6.6% moisture contents increase. The optimum moisture contents of wood pellet is needed to improve the boiler performance and efficiency.

A Study on Estimation of Air Pollutants Emission from Wood Stove and Boiler, Wood-pellet Stove and Boiler (화목난로∙보일러와 펠릿난로∙보일러 사용에 의한 대기오염물질 배출량 산정에 관한 연구)

  • Kim, Dong-Young;Han, Yong-Hee;Choi, Min-Ae;Park, Sung-Kyu;Jang, Young-Kee
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.251-260
    • /
    • 2014
  • Biomass burning is one of the significant emission source of PM and CO, but a few studies are reported in Korea. Air pollutants emission from biomass burning such as wood stove and boiler, and wood-pellet stove and boiler were estimated in this study. Activity levels related to biomass burning such as fuel types, amount of fuel loading, and location and temporal variation were investigated by field survey over Korea. Fuel loadings were 14.9 kg/day for wood stove, 31.3 kg/day for wood boiler, 12.8 kg/day for wood-pellet stove, 32.5 kg/day for wood-pellet boiler during the season of active use. These were mostly burned in winter season from october to april of next year. Estimated annual emissions from wood stove & boiler were CO 76,677, $NO_x$ 710, $SO_x$ 70, VOC 20,941, TSP 6,605, PM10 2,921, PM2.5 1,851, and NH3 7 ton/yr, respectively. Emissions from wood-pellet stove and boiler were CO 32,798, $NO_x$ 1,830, $SO_x$ 25, VOCs 5,673, TSP 629, PM10 457, PM2.5 344, and $NH_3$ 2 ton/yr, respectively. When the emission estimates are compared with total emissions of the national emission inventory (CAPSS: Clean Air Policy Support System), Those occupy 12.5%, 2.8% of total national emission for CO and PM10, respectively. These results show wood and wood-pellet burning appliances were one of the major source of air pollution in Korea. In future, these types of heaters need to be regulated to reduce air pollution, especially in suburb area.

Analyses of GHG Reduction Effectiveness and Economic Feasibility in the Wood Pellet Fuel Switching Project (목재 펠릿 연료전환 사업의 온실가스 감축 효과 및 경제성 분석)

  • Lee, Jin-Chul;Kang, Kyu-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.594-605
    • /
    • 2013
  • This study was performed to analyze GHG (Greenhouse gas) reduction effectiveness and economic feasibility in the wood pellet fuel switching project using JCDM (Japan Clean Development Mechanism) and KVER (Korea Voluntary Emission Reduction)data. The major data for the analyses consist of investment costs, annual GHG reductions, fuel prices and GHG credit prices. The wood pellet fuel switching projects are the $CO_2$-zero projects. Therefore, these projects are essential to accomplish the GHG mitigation target, especially in Korea. In order to raise the economic feasibility of the wood pellet fuel switching project, the results of this study suggest that the Korean government should reduce the price of wood pellet through the supply on a large scale and raise the KCER price of wood pellet fuel switching project.