• Title/Summary/Keyword: Wood boiler

Search Result 55, Processing Time 0.031 seconds

Evaluation of Plant Performance during Biomass Co-firing in Pulverized Coal Power Plant (미분탄화력발전에서의 바이오매스 혼소 시 플랜트 성능특성 평가)

  • Mun, Tae-Young;Tefera, Zelalem Tumsa;Lee, Uendo;Lee, Jeung Woo;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.8-17
    • /
    • 2014
  • The aims of this research were to evaluate effects of biomass co-firing to pulverized coal power plants and the variation of co-firing ratios on the plant efficiency related to power consumption of auxiliary system and flue gas characteristics such as production and component by process simulation based on the existing pulverized coal power plant. In this study, four kinds of biomass are selected as renewable fuel candidates for co-firing: wood pellet(WP), palm kernel shell(PKS), empty fruit bunch(EFB) and walnut shell(WS). Process simulation for various biomass fuels and co-firing ratios was performed using a commercial software. Gas side including combustion system and flue gas treatment system was considering with combination of water and steam side which contains turbines, condenser, feed water heaters and pumps. As a result, walnut shell might be the most suitable as co-firing fuel among four biomass since when 10% of walnut shell was co-fired with 90% of coal on thermal basis, flue gas production and power consumption of auxiliary systems were the smallest than those of other biomass co-firing while net plant efficiency was relatively higher than those of other biomass co-firing. However, with increasing walnut shell co-firing ratios, boiler efficiency and net plant efficiency were expected to decrease rather than coal combustion without biomass co-firing.

Effect of the De-NOx Facility Operating Condition on NOx Emission in a 125 MW Wood Pellet Power Plant (125 MW급 우드펠릿 발전소에서 탈질설비 운전조건이 질소산화물 발생량에 미치는 영향)

  • Jeon, Moonsoo;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.18 no.3
    • /
    • pp.52-61
    • /
    • 2022
  • This study tested the effect of de-NOx Facility operating condition on Nox emisiion in a 125 MW wood pellet power plant in Yeongdong Eco Power Plant Unit 1, which is in operation. As SNCR urea flow rate increased, NOx emission gradually decreased, but ammonia slip after SCR increased. The boiler under test has a structure that is unfavorable to SNCR operation due to the high internal temperature, and the optimum location of the nozzle will be required. SCR dilution air temperature change did not affect the amount of NOx generated. Increasing SCR ammonia flow reduced the NOx emission at SCR outlet and also increased the NOx removal efficiency. However, the ammonia flow rate of 111 kg/h, which does not exceed the ammonia slip its own reference limit, is estimated to be the maximum operating standard. The increase in SCR mixer pressure reduced NOx emission and the removal efficiency was also measured to be the most effective variable to inhibit NOx production.

  • PDF

Recent Epidemiologic Features of Carbon Monoxide Poisoning in Korea: A Single Center Retrospective Cohort Study (최근 국내 일산화탄소 중독의 역학적 특징: 일개 응급의료센터의 후향적 코호트 연구)

  • Choi, Byung Ho;Jeon, Jin;Ryoo, Seung Mok;Seo, Dong Woo;Kim, Won Young;Oh, Bum Jin;Lim, Kyoung Soo;Sohn, Chang Hwa
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.10 no.2
    • /
    • pp.80-85
    • /
    • 2012
  • Purpose: The aim of this study was to describe the epidemiologic characteristics of adult patients with carbon monoxide poisoning who presented to the emergency department in recent years. Methods: This was a retrospective cohort study on adult consecutive patients with carbon monoxide (CO) poisoning who presented to the emergency department of a tertiary care university-affiliated hospital from January 1, 2008 to December 31, 2011. Results: A total of 91 patients were included in this study; there were 56(61.5%) unintentional and 35(38.5%) intentional poisonings. For the unintentional CO poisonings, the principal sources of exposure to CO were fire (39.3%), charcoal (17.9%), briquette charcoal (7.1%), wood burning boiler (7.1%), gas boiler (5.4%), automobile heater (3.6%), briquette boiler (3.6%), firewood (3.6%), and other items (12.5%). For the intentional CO poisonings, the sources were ignition charcoal (60.0%), briquette (31.4%), charcoal (5.7%) and butane gas (2.9%). For the unintentional CO poisonings, the places of poisoning were the home (58.9%), workplace (10.7%), public accommodation (8.9%), tent (8.9%), automobile (3.6%) and parking place (1.8%). For the intentional CO poisonings, the places of poisoning were the home (77.1%), public accommodation (11.4%) and automobile (11.4%). The proportion of intentional CO poisonings among total poisonings has increased significantly in recent years; 0.0% in 2008, 3.3% in 2009, 5.5% in 2010, and 29.7% in 2011. Conclusion: This study showed that in recent years in Korea, the source of CO has diversified broadly and intentional CO poisonings from burning ignition charcoal or briquettes has increased. Prevention efforts should consider these factors.

  • PDF

A Study of the Anbang Usage and Furniture in the Oiam-Ri Folk Village in Chung-Nam Province (충남 외암리 민속 마을의 안방 사용과 가구 보유 실태 연구)

  • 고도임
    • Journal of the Korean Home Economics Association
    • /
    • v.37 no.10
    • /
    • pp.81-90
    • /
    • 1999
  • This study investigated the present traditional Korean farmhouse based on a survey of 30 households from Oiam-Ri folk Village in Chung-Nam Province. This study was primarily concerned with the present housing; the size and plan of the house, lighting and heating, the finishing materials of anbang(the master's bedroom or ondol) and the kinds of fumiture. I was also interested in identifying the socio-demographic and physical variables that influenced the housing, both the ordinary farm households and the descendent of nobility households. Bibliographical studies, cultural approaches, field surveys with tape recordings, and questionnaires were used to collect the data. The results showed that the types of house plans were mixed from the southern region(one-line type) and middle region(courtyard type). The heating system and the fuel for the ondol anbang has changed entirely from wood burning system to oil boiler system. The finishing material of the anbang floor changed from traditional oil paper and straw mats to vinyl flooring. Traditional fumiture and small decor items are disappearing and are being replaced by modem items, but the descendents of the nobility household kept many traditional type of fumiture and small decor items.

  • PDF

Utilization of Charcoal as an Environmentally Friendly Building Materials (II) - A Study on the Energy Saving and Sound Insulation Characteristics of Building Materials Prepared with Charcoal - (목탄을 이용한 친환경 건축자재 이용기술(II) - 목탄 함유 건축자재의 에너지 절감 및 차음 특성에 관한 연구)

  • Ahn, Byoung-Jun;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.41-52
    • /
    • 2011
  • This study was carried out to investigate the effect of energy saving and sound insulation of building materials mixed with charcoal. To investigate the functionality of building based on the difference of construction materials, three different experimental buildings were constructed. They were buildings built with the conventional construction materials (A), the charcoal construction materials (B), and the charcoal-sericite construction materials (C). The study showed that energy consumption could be reduced approximately 9.5% and 14.5% by replacing A with B and C, respectively. Especially, it is revealed that the lower outdoor temperature was, the higher energy saving effect was. Also, after shutoff the boiler switch the decrease rate of room temperature of the one using B was lower than those of others using A and C so that the room temperature at the building using B was higher by $3.5{\sim}4.2^{\circ}C$ in the 1 meter air above the ground and by $4.4{\sim}5.4^{\circ}C$ on the floor surface after 12 hours passed. In the building noise test the heavy-and light-weight impact sound of the plate, represented by criterion of noise between floors in multi-story building, tended to decrease in the test sample containing charcoal.

Study of Oil Palm Biomass Resources (Part 4) Study of Pelletization of Torrefied Oil Palm Biomass - (오일팜 바이오매스의 자원화 연구 IV - 반탄화된 오일팜 바이오매스의 펠릿 성형 특성 연구 -)

  • Sung, Yong Joo;Kim, Chul-Hwan;Lee, Ji-Young;Cho, Hu-Seung;Nam, Hye-Gyeong;Park, Hyeong-Hun;Kwon, Sol;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.24-34
    • /
    • 2015
  • Domestic companies supplying electricity must increase obligatory duty to use renewable energy annually. If not met with obligatory allotment, the electricity-supply companies must pay RPS (Renewable Portfolio Standards) penalty. Although the power plants using a pulverizing coal firing boiler could co-fire up to around 3 per cent with wood pellets mixed in with coal feedstock without any major equipment revamps, they recorded only about 60 per cent fulfillment of RPS. Consequently, USD 46 million of RPS penalty was imposed on the six power supplying subsidiaries of GENCOs in 2014. One of the solutions to reduce the RPS penalty is that the power supply companies adopt the co-firing of torrefied lignocellulosic biomass in coal plants, which may contribute to the use of over 30 per cent of torrefied biomass mixed with bituminous coals. Extra binder was required to form pellets using torrefied biomass such as wood chips, PKS (Palm Kernel Shell) and EFB (Empty Fruit Bunch). Instead of corn starch, 30, 50 and 70 per cent of Larix saw dusts were respectively added to the torrefied feedstocks such as Pinus densiflora chips, PKS and EFB. The addition of saw dusts led to the decrease of the calorific values of the pellets but the forming ability of the pelletizer was exceedingly improved. Another advantage from the addition of saw dusts stemmed from the reduction of ash contents of the pellets. Finally, it was confirmed that torrefied oil palm biomass such as PKS and EFB could be valuable feedstocks in making pellets through improved binding ability.

Utilization of Upgraded Solid Fuel Made by the Torrefaction of Indonesian Biomass (인도네시아 바이오매스 반탄화를 통해 제조된 고품위 고형연료의 활용)

  • Yoo, Jiho
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.239-250
    • /
    • 2020
  • Biomass is an abundant renewable energy resource that can replace fossil fuels for the reduction of greenhouse gas (GHG). Indonesia has a large number of cheap biomass feedstocks, such as reforestation (waste wood) and palm residues (empty fruit bunch or EFB). In general, raw biomass contains more than 20% moisture and lacks calorific value, energy density, grindability, and combustion efficiency. Those properties are not acceptable fuel attributes as the conditions currently stand. Recently, torrefaction facilities, especially in European countries, have been built to upgrade raw biomass to solid fuel with high quality. In Korea, there is no significant market for torrefied solid fuel (co-firing) made of biomass residues, and only the wood pellet market presently thrives (~ 2 million ton yr-1). However, increasing demand for an upgraded solid fuel exists. In Indonesia, torrefied woody residues as co-firing fuel are economically feasible under the governmental promotion of renewable energy such as in feed-in-tariff (FIT). EFB, one of the chief palm residues, could replace coal in cement kiln when the emission trading system (ETS) and clean development mechanism (CDM) system are implemented. However, technical issues such as slagging (alkali metal) and corrosion (chlorine) should be addressed to utilize torrefied EFB at a pulverized coal boiler.

Biodegradation of toluene vapor by evaporative cooler model based biofilter

  • Vikrant, Kumar;Nagar, Harshil;Anand, Raja;Sharma, Anjney;Lee, Sang-Hun;Giri, Balendu Shekher;Kim, Ki-Hyun;Singh, Ram Sharan
    • Analytical Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.57-64
    • /
    • 2018
  • The biodegradation of toluene vapor was investigated using a new type of biofilter equipped with a laboratory-scale evaporative cooler model packed with wood wool fibers (area: $360cm^2$). For the purpose of this study, the biofilter system was inoculated with Pseudomonas sp. RSST (MG 279053). The performance of this biofilter, assessed in terms of toluene removal efficiency (and elimination capacity), was as high as 99 % at a loading rate of $6g/h{\cdot}m^2$. The toluene removal efficiency decreased in an exponential manner with the increase in the loading rate. The cooler model-based biofilter was able to remove more than 99 % of toluene using Pseudomonas sp. RSST (MG 279053) as an effective inoculum. This biofilter is designed to operate under batch conditions for the removal of toluene in confined environments (e.g., automotive plants, boiler rooms in manufacturing facilities, and offshore drilling platforms).

A Study on the Regeneration of SCR Catalyst Deactivated by Unburned Carbon Deposition (탄소침적으로 피독된 탈질 촉매의 재생에 관한 연구)

  • Moon, Seung-Hyun;Lee, Seung-Jae;Ryu, In-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.928-935
    • /
    • 2010
  • A bag filter system was partially burnt down during a trial run of waste wood incineration boiler. This brought about unburned hydrocarbon which caused a rapid deactivation of low temperature SCR catalyst set up in two stage after the bag filter. The deactivated catalyst was investigated in order to trace the origin by several characterization methods such as XRD, EDX, BET, TGA, SEM. The deactivated catalyst was regenerated by different methods such as acid washing, water washing in ultrasonication, and calcination treatment under air condition. It is found the calcination treatment under air condition at $450^{\circ}C$ for 2 hours to be the best regeneration method. The catalytic activity was measured in the form of 2 cm ${\times}$ 2 cm ${\times}$ 10 cm (catalyst weight 10 g) honeycomb type. A deNOx efficiency of the regenerated catalyst showed 100% at $180^{\circ}C$ which is the same level of fresh one.

Analysis of Predicted Reduction Characteristics of Ash Deposition Using Kaolin as a Additive During Pulverized Biomass Combustion and Co-firing with Coal (미분탄 연소 시스템에 바이오매스 혼소시 카올린 첨가제 적용에 따른 회 점착 저감 특성 예측 연구)

  • Jiseon Park;Jaewook Lee;Yongwoon Lee;Youngjae Lee;Won Yang;Taeyoung Chae;Jaekwan Kim
    • Clean Technology
    • /
    • v.29 no.3
    • /
    • pp.193-199
    • /
    • 2023
  • Biomass has been used to secure renewable energy certificates (REC) in domestic and overseas coal-fired power plants. In recent years, biofuel has been diversified from traditional wood pellets to non-woody biomass. Non-woody biomass has a higher content of alkaline metals such as K and Na than wood-based biomass, resulting in a lower melting point and an increase in slagging on boiler tubes, which reduces boiler efficiency. This study analyzed the effect of kaolin, an additive commonly used to increase melting points, on biomass co-firing to coal through thermochemical equilibrium calculations. In a previous experiment on biomass co-firing to coal conducted at 80 kWth, it was interpreted that the use of kaolin actually increased the amount of fouling. In this study, analysis showed that when kaolin was added, aluminosilicate compounds were generated due to Al2O3, which is abundant in coal, and mullite was formed. Thus, it was confirmed that the amount of slag increased when more kaolin was used. Further analysis was conducted by increasing the biomass co-firing rate from 0% to 100% at 10% intervals, and the results showed non-linear liquid slag generation. As a result, it was found that the least amount of liquid slag was generated when the biomass co-firing rate was between 50 and 60%. The phase diagram analysis showed that high melting point compounds such as leucite and feldspar were most abundantly generated under these conditions.