Effect of the De-NOx Facility Operating Condition on NOx Emission in a 125 MW Wood Pellet Power Plant

125 MW급 우드펠릿 발전소에서 탈질설비 운전조건이 질소산화물 발생량에 미치는 영향

  • Jeon, Moonsoo (Dept. of Power Engineering, Hanyang University) ;
  • Lee, Jae-Heon (School of Mechanical Engineering, Hanyang University)
  • 전문수 (한양대학교 파워엔지니어링공학과) ;
  • 이재헌 (한양대학교 기계공학부)
  • Published : 2022.09.30

Abstract

This study tested the effect of de-NOx Facility operating condition on Nox emisiion in a 125 MW wood pellet power plant in Yeongdong Eco Power Plant Unit 1, which is in operation. As SNCR urea flow rate increased, NOx emission gradually decreased, but ammonia slip after SCR increased. The boiler under test has a structure that is unfavorable to SNCR operation due to the high internal temperature, and the optimum location of the nozzle will be required. SCR dilution air temperature change did not affect the amount of NOx generated. Increasing SCR ammonia flow reduced the NOx emission at SCR outlet and also increased the NOx removal efficiency. However, the ammonia flow rate of 111 kg/h, which does not exceed the ammonia slip its own reference limit, is estimated to be the maximum operating standard. The increase in SCR mixer pressure reduced NOx emission and the removal efficiency was also measured to be the most effective variable to inhibit NOx production.

본 연구는 실제 운영중인 영동에코발전본부 1호기 125 MW 우드펠릿 발전소를 대상으로 탈질설비 운전조건이 NOx 발생량에 미치는 영향을 시험하였다. SNCR 요소 유량 증가에 따라 NOx 농도는 점차 감소하였으나 SCR 후단 암모니아 슬립은 상승하였다. 시험대상 보일러는 고온의 내부온도로 인해 SNCR 운영에 불리한 구조이며 노즐의 최적위치 검토가 필요할 것이다. SCR 희석공기 온도변화는 NOx 발생량에 영향을 미치지 않았다. SCR 암모니아 유량 증가는 SCR 후단 NOx 농도를 감소시켰고 NOx 제거효율도 증가시켰다. 다만 암모니아 슬립 자체 기준치를 초과하지 않는 암모니아 유량 111 kg/h가 최대 운전기준으로 추정된다. SCR 믹서 압력 상승은 NOx 농도를 감소시키고 제거효율도 최대로 측정되어 NOx 생성을 가장 효과적으로 억제하는 변수로 파악되었다.

Keywords

References

  1. KPLI, 2008, Thermal Power Plant Practice II, pp 700-712.
  2. Law on Integrated Management of Environmental Pollution Facilities, Revised to Other Laws, 2019. 4. 2.
  3. Enforcement Rules of the Air Quality Conservation Act, [Appendix 8] Air Pollutant Emission Standards (related to Article 15), Revised 2020. 4. 3.
  4. KOEN, 2008, Power and Combustion Engineering, pp 557-563.
  5. Jin Sun Cha, et al, 2011, Nitrogen Oxides Removal Characteristics of SNCR-SCR Hybrid System, Korean Chemical Society, Industrial Chemistry 22, No. 6, pp 658-663.
  6. Sang-Ki Choi, 2004, NOx Removal Characteristics of Hybrid SNCR-SCR Applied Low-Temperature SCR, pp 46-52.
  7. Jung, Kwang Sung, 2018, The Effect of Supply Patterns of Overfire Air on Generation of NOx and CO in a Wood Pellet Fired Boiler, pp 1-28.
  8. KOEN, Company Introduction - Power Plant Operation, https://www.koenergy.kr/kosep/hw/fr/ov/ ovhw23/main.do?menuCd=FN03050102 (Searched 2020. 4. 19.)
  9. KEPCO Research Institute, 2018, Acceptance Thermal Performance Test Results After Fuel Conversion of YoungDong Thermal Power Plant Unit #1, pp 7-10.
  10. POSCO ICT, 2018, Yeongdong Eco Power Plant Unit 1, 2 Denitrification Facility Completed Book, Data Book 1-4.
  11. POSCO ICT, 2018, Yeongdong Eco Power Plant Unit 1, 2 Denitrification Facility Operation Manual, pp 2-14.
  12. NANO Corp., 2019, Yeongdong Eco Power Plant Unit 1 The Performance report for SCR Catalyst, pp 7-11.
  13. Bernd J. von der Heide, 2013, SNCR Process for Coal fired Boilers, Mehldau & Steinfath Umwelttechnik GmbH Essen, Germany, pp 1-23.
  14. Lee, Chang ki, 2019, A Study on Spray Characteristics and NOx Reduction Efficiency of SCR System, pp 20-49.
  15. Dae-su Lee, 2004, A Study on the scale occurred in boiler tube by reacted reductant in the SNCR system, pp 20-24.
  16. Kim, Woo Tae, 2008, Study of SNCR+SCR hybrid system application for NOx elimination of power plant boiler, pp 59-65.