Browse > Article
http://dx.doi.org/10.5806/AST.2018.31.2.57

Biodegradation of toluene vapor by evaporative cooler model based biofilter  

Vikrant, Kumar (Department of Chemical Engineering & Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University)
Nagar, Harshil (Department of Chemical Engineering & Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University)
Anand, Raja (Department of Chemical Engineering & Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University)
Sharma, Anjney (ICAR-National Bureau of Agriculturally Important Microorganisms)
Lee, Sang-Hun (Departments of Environmental Science, Keimyung University)
Giri, Balendu Shekher (Department of Chemical Engineering & Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University)
Kim, Ki-Hyun (Departments of Civil & Environmental Engineering, Hanyang University)
Singh, Ram Sharan (Department of Chemical Engineering & Technology, Centre of Advanced Study, Indian Institute of Technology, Banaras Hindu University)
Publication Information
Analytical Science and Technology / v.31, no.2, 2018 , pp. 57-64 More about this Journal
Abstract
The biodegradation of toluene vapor was investigated using a new type of biofilter equipped with a laboratory-scale evaporative cooler model packed with wood wool fibers (area: $360cm^2$). For the purpose of this study, the biofilter system was inoculated with Pseudomonas sp. RSST (MG 279053). The performance of this biofilter, assessed in terms of toluene removal efficiency (and elimination capacity), was as high as 99 % at a loading rate of $6g/h{\cdot}m^2$. The toluene removal efficiency decreased in an exponential manner with the increase in the loading rate. The cooler model-based biofilter was able to remove more than 99 % of toluene using Pseudomonas sp. RSST (MG 279053) as an effective inoculum. This biofilter is designed to operate under batch conditions for the removal of toluene in confined environments (e.g., automotive plants, boiler rooms in manufacturing facilities, and offshore drilling platforms).
Keywords
Biofiltration; Removal efficiency; Toluene vapor; Cooler model based Biofilter; Pseudomonas sp. RSST (MG 279053);
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. S. Giri, and R. A. Pandey, Bioresour. Technol., 142, 420-427 (2013).   DOI
2 R. S. Singh, B. N. Rai, and S. N. Upadhyay, Process Saf. Environ. Prot., 88, 366-371 (2010).   DOI
3 R. S. Singh, B. N. Rai, and S. N. Upadhyay, Environ. Technol., 27, 349-357 (2006).   DOI
4 S. J. Ergas, K. Kinney, M. E. Fuller, and K. M. Scow, Biotechnol. Bioeng, 44, 1048-1054 (1994).   DOI
5 A. Mallakin, and O. P. Ward, J. Ind. Microbiol., 16, 309-318 (1996).   DOI
6 A. K. Shukla, R. S. Singh, S. N. Upadhyay, and S. K. Dubey, Bioresour. Technol., 101, 8119-8126 (2010).   DOI
7 J. Huang, and K. L. Pinder, Biotechnol. Bioeng., 45, 212-218 (1995).   DOI
8 C. Alonso, M. T. Suidan, G. A. Sorial, F. L. Smith, P. Biswas, P. J. Smith, and R. C. Brenner, Biotechnol. Bioeng., 54, 583-594 (1997).   DOI
9 B. S. Giri, S. N. Mudliar, S. C. Deshmukh, S. Banerjee, and R. A. Pandey, Bioresour. Technol., 101, 2185-2190 (2010).   DOI
10 A. Sharma, P. Singh, S. Kumar, P. L. Kashyap, A. K. Srivastava, H. Chakdar, R. N. Singh, R. Kaushik, A. K. Saxena, and A.K. Sharma, Geomicrobiol. J., 32, 170-180 (2015).   DOI
11 G. Leson, and A. M. Winer, J. Air. Waste. Manage. Assoc., 41, 1045-1054 (1991).   DOI
12 K. Tamura, J. Dudley, M. Nei, and S. Kumar, Mol. Biol. Evol., 24, 1596-1599 (2007).   DOI
13 C. Lu, M. R. Lin, and C. Chu, J. Environ. Eng., 125, 775-779 (1999).   DOI
14 D. W. Park, S. S. Kim, S. Haam, I. S. Ahn, E. B. Kim, and W. S. Kim, Environ. Technol., 23, 309-318 (2002).   DOI
15 G. Gallastegui, A. Avalos Ramirez, A. Elias, J. P. Jones, and M. Heitz, Bioresour. Technol., 102, 7657-7665 (2011).   DOI
16 G. Gallastegui, A. Barona, N. Rojo, L. Gurtubay, and A. Elías, Process Saf. Environ. Prot., 91, 112-122 (2013).   DOI
17 Y. Zhu, S. Li, Y. Luo, H. Ma, and Y. Wang, PeerJ, 4, e2045 (2016).   DOI
18 T. M. Chong, W. F. Yin, J. W. Chen, S. Mondy, C. Grandclement, D. Faure, Y. Dessaux, and K. G. Chan, AMB Express, 6, 95 (2016).   DOI
19 M. Murata, M. Tsujikawa, and S. Kawanishi, Biochem. Biophys. Res. Commun., 261, 478-483 (1999).   DOI
20 R. M. Dixit, S. C. Deshmukh, A. A. Gadhe, G. S. Kannade, S. K. Lokhande, R. A. Pandey, A. N. Vaidya, S. N. Mudliar, and M. A. Deshusses, Environ. Technol., 33, 751-760 (2012).   DOI
21 S. Mudliar, B. Giri, K. Padoley, D. Satpute, R. Dixit, P. Bhatt, R. Pandey, A. Juwarkar, and A. Vaidya, J. Environ. Manage., 91, 1039-1054 (2010).   DOI
22 B. S. Giri, K. H. Kim, R. A. Pandey, J. Cho, H. Song, and Y. S. Kim, Process Biochem., 49, 1543-1554 (2014).   DOI