• 제목/요약/키워드: Wood Bending

검색결과 374건 처리시간 0.028초

Fire Retardant Treatment to the Plywood with Di-ammonium Phosphate [(NH4)2HPO4] (II) - Effect of Platen Temperature on Bending Strength of Treated Plywoods - (제2인산(第二燐酸) 암모늄에 의(依)한 합판(合板)의 내화처리(耐火處理)(II) - 열판온도(熱板溫度)가 처리합판(處理合板)의 곡강도(曲强度)에 미치는 영향(影響) -)

  • Chung, Woo-Yang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제12권2호
    • /
    • pp.3-9
    • /
    • 1984
  • This study was carried out to examine the practicality of DAP[$(NH_4)_2HPO_4$] as fire retardant for plywood by static bending test the redried plywoods which had been soaked in 20% $(NH_4)_2HPO_4$ solution. Being hot/cold soaked in the solution for 3/3, 6/3, 9/3 and 12/3 hours and redried by cyclic press-drying method at the platen temp. of 130, 145, 100 and $175^{\circ}C$, the treated plywoods were tested to offer the mechanical data, that is, $S_{pl}$(stress at proportional limit), MOE(modulus of elasticity), MOR(modulus of rupture) and $W_{pl}$(work per unit volume to proportional limit ) in flexure. The results obtained were summarized as follows. 1. $S_{pl}$ of fire retardant treated plywoods ("FRP" would be used hereinafter) decreased as the platen temperature increased, but it was superior to that of non-treated plywoods(Control) at $160^{\circ}C$ or higher. 2. MOE of FRP decreased roughly with the increase of temperature, hut this tendency was not constant. And the value of FRP was higher than that of Control even at $175^{\circ}C$. 3. MOR of FRP showed same temperature-dependent tendency as MOE, but it was influenced more sensitively at the higher temperature. 4. $W_{pl}$ of FRP also decreased gradually with the increase of platen temperature and the value in DAP 9/3 treatment was Jess than 70% of control plywoods. 5. In view of redrying time and mechanical properties, the most reasonable platen temperature for DAP treated FRP was $160^{\circ}C$ in this study.

  • PDF

A Study on the Physical Properties of Sawdust-Board Combined With Reinforce Material (보강재료(補强材料)를 첨가(添加)한 톱밥보드의 물리적(物理的) 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Phil-Woo;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • 제11권3호
    • /
    • pp.31-38
    • /
    • 1983
  • This experiment was carried out to improve the physical and mechanical properties of sawdust-board by combining with reinforce material, that is, plastic wire screen and steel wire screen. In experiment results, the density of sawdust-board reinforced with three steel wire screens was highest and its bending strength was also highest. Wastepaper-5% mixed sawdust-board showed as high bending strength as other boards, and therefore the possibility of using wastepaper as raw materials for boards. The sawdust-board with steel wire screen was not ruptured immediatedly after having been deformed by static loading. However, plywood showed higher bending strength than the reinforced sawdust-boards.

  • PDF

Characteristics of Board Made from Miscanthus sinensis var. purpurascens Particles (거대억새 파티클로 제조된 보드의 특성)

  • Oh, Seung Won;Park, Hee Jun;Hwang, Jung woo
    • Journal of agriculture & life science
    • /
    • 제46권2호
    • /
    • pp.43-48
    • /
    • 2012
  • This study was investigated on the properties of board made from Miscanthus sinensis var. purpurascens particles differed in density of board and mixed ratio of powder type- and liquid type-phenolic resin. As the board density increase, thickness swelling and bending strength increased while water absorption decreased. With increasing the resin content, water absorption and thickness swelling decreased while MOR and internal bond strength increased. The board made of liquid type phenol-formaldehyde resin was low in water absorption and thickness swelling, and there were similar bending strengths between power type- and liquid type-phenol resin in resin cont of 11% and 13% at the board density $0.4g/cm^3$ and internal bond strength was higher with liquid type-phenolic resin in its bending strength.

Effect of Green Tea and Saw Dust Contents on Dynamic Modulus of Elasticity of Hybrid Composite Boards and Prediction of Static Bending Strength Performances (이종복합보드의 동적탄성률에 미치는 녹차와 톱밥 배합비율의 영향 및 정적 휨 강도성능의 예측)

  • Park, Han-Min;Lee, Soo-Kyeong;Seok, Ji-Hoon;Choi, Nam-Kyeong;Kwon, Chang-Bae;Heo, Hwang-Sun;Byeon, Hee-Seop;Yang, Jae-Kyung;Kim, Jong-Chul
    • Journal of agriculture & life science
    • /
    • 제46권2호
    • /
    • pp.9-17
    • /
    • 2012
  • In this study, in addition to the green tea - wood fiber hybrid composite boards of previous researches, to make effective use of saw dust of domestic cypress tree with functionalities and application as interior materials, eco-friendly hybrid composite boards were manufactured from wood fiber, green tea and saw dust of cypress tree. We investigated the effect of the component ratio of saw dust and green tea on dynamic MOE (modulus of elasticity). Dynamic MOE was within 1.41~1.65 GPa, and showed the highest value in wood fiber : green tea : saw dust = 50 : 40 : 10 of the component ratio, and had the lowest value in 50 : 30 : 20 of component ratio. These values were 1.4~1.6 times higher than static bending MOE of wood fiber - saw dust - green tea hybrid composite boards, and were 2.0~2.9 times lower than those of green tea - wood fiber hybrid composite boards reported in the previous researches. From the results of correlation regression analyses between dynamic MOE and static strength performances, a very high correlation coefficients were obtained, therefore it was found that static bending strength performances can be estimated with a high reliability from dynamic MOE.

Bending Creep Performances of Hybrid Laminated Woods Composed of Wood-Wood Based Boards (목재와 목질보드 복합적층재의 휨 크리프 성능)

  • Park, Han-Min;Kang, Dong-Hyun;Choi, Yoon-Eun;Ahn, Sang-Yeol;Ryu, Hyun-Su;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권1호
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, to study an effective use and improve strength performances of woods and wood-based materials, three-ply hybrid laminated woods which are composed of spruce in the face and three kinds of wood-based boards (MDF, PB, OSB) in the core were manufactured, and the effect of constitution elements used for the core laminae on bending creep performances was investigated. The shape of creep curves showed exponential function plots which the upper right side was increased, and differed among the kinds of wood-based boards used for the core laminae of hybrid laminated wood. The creep deformation perpendicular to the grain of faces of hybrid laminated woods was in order $C_{\perp}$(P) > $C_{\perp}$(M) > $C_{\perp}$(O) with PB, MDF and OSB in the core, respectively. It was found that the creep deformation arranged with OSB in the core had 2 times smaller than those arranged with MDF and PB in the core. By hybrid laminating, the creep deformation of spruce perpendicular to the grain was markedly decreased. On the other hand, the creep deformation parallel to the grain of the faces ($C_{\parallel}$ type) of hybrid laminated woods was in order $C_{\parallel}$(P) > $C_{\parallel}$(O) > $C_{\parallel}$(M) with PB, OSB and MDF in the core. The ratios among three hybrid laminated woods were considerably decreased, especially the difference between $C_{\parallel}$(P) and $C_{\parallel}$(O) hybrid laminated woods arranged with PB and OSB in the core was very small. These values showed 0.108~0.464 times smaller than creep deformation of three wood-based boards and it was found that creep deformation of three wood-based boards was considerably decreased by hybrid laminating. Creep anisotropy of hybrid laminated woods was greater in creep deformation than in initial deformation, whereas it was found that the values was much smaller than that of spruce parallel laminated woods.

Evaluation of Physical Properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) Lumber Heat-Treated by Superheated Steam (과열증기 열처리 잣나무재의 물성 평가)

  • Park, Yong-Gun;Eom, Chang-Deuk;Park, Jun-Ho;Chang, Yoon-Seong;Kim, Kwang-Mo;Kang, Chun-Won;Yeo, Hwan-Myeong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권4호
    • /
    • pp.257-267
    • /
    • 2012
  • In this study, the method for heat treating wood using superheated steam (SHS) was designed and applied. The physical and mechanical properties of Korean Pine (Pinus koraiensis Siebold & Zucc.) lumber heat-treated by SHS at $170^{\circ}C$ and 0.4 MPa for 10 hours were compared with those of non-treated and normal heat-treated wood. The amount of adsorbed water and equilibrium moisture content of the SHS treated wood were lower than non-treated wood. On the other hand the compressive strength parallel to grain and the bending strength of SHS treated wood were higher than those of non-treated wood. The hygroscopicity of SHS treated wood was similar to normal heat treated wood at $220^{\circ}C$. Internal checks that often occur during normal heat treatment were not developed at SHS treatment. Also, SHS treatment are effective in control of internal checks occurrence and resin exudation.

Physical and Mechanical Characteristics of Phellodendron amure Ruprecht (황벽나무의 물리·역학적 특성)

  • Kim, Hyun-Woo;Byeon, Hee-Seop;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권5호
    • /
    • pp.519-524
    • /
    • 2017
  • Physical, mechanical and deteriorating properties of Phellodendron amure were investigated. Air dried density located indoor was 0.41 but $0.43g/cm^3$ outdoor. In oven dry shrinkage, T/R ratio for located indoor was 1.40 but 1.32 outdoor. Hygroscopic property at $40^{\circ}C$ with 90% relative humidity was 16.30% for indoor and 15.80% for outdoor. Compressive strength for outdoor conditioned sample was 43.81 MPa but 40.33 MPa for indoor conditioned. Also bending strenght for outdoor conditioned was 84.63 MPa but 68.80 MPa for indoor conditioned. Impact strength was 3.43 and $4.00J/cm^2$ indoor and outdoor, respectively. Hardness at cross-section was 47.92 and 49.20 MPa indoor and outdoor, respectively. With one-year conditioning at indoor or outdoor, there was no significantly different in strength properties, which came from strong resistance for deterioration. Also Phellodendron amure wood showed dimensionally stable raw material based on low T/R ratio.

Withdrawal and Lateral Resistance of Nail Joints Composed of Dimension Lumber and OSB in Light-Frame Wood Construction (경골목구조에서 구조재와 오에스비로 구성된 못 접합부의 인발 및 전단성능)

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권3호
    • /
    • pp.211-220
    • /
    • 2013
  • The nailed joints in wood construction are commonly designed to resist and carry the lateral load but also subject to withdrawal force like uplift load due to the wind. This research was conducted to evaluate the performance of nailed joint composed of dimension lumber and sheathing materials through the nail withdrawal and unsymmetric double shear joint test, and then compared to current design values. The withdrawal strength was greatly dependant on wood specific gravity, and the withdrawal strength of I-joist with OSB showed higher value in spite of low specific gravity. The maximum withdrawal loads were greater than that of derived current design values about 5 times. The lateral resistance of Japanese larch/OSB nailed joints was higher than that of SPF/OSB nailed joint, and derived allowable lateral strength of nailed joints in this study exceeded the current design values. The failure mode of nailed joints was primarily due to the nail bending and this tendency was notable in SPF/OSB nailed joint.

Properties of Particleboard Using Byproduct of Plywood Manufacture - Evaluation on the Elements of Surface Layer and Pre-treatment of Particles (합판 공장 부산물을 이용한 파티클보드의 물성에 관한 연구 - 표층 구성요소 및 파티클 전처리 여부에 따른 비교 -)

  • Hwang, Jung Taek;Pi, Duck Won;Kang, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권1호
    • /
    • pp.33-41
    • /
    • 2013
  • This study was performed to analyse cause of quality deterioration using byproduct of plywood and to determine physical and mechanical properties of particleboard used new bonding condition we found. The result of bending strength of Com-Ply board using EMDI is 57.7 $N/mm^2$ on linear direction and 25.1 $N/mm^2$ on vertical direction. EMDI has better water-resisting qualities than Urea formaldehyde adhesive according to result of thickness swelling and water absorption test. Pre-treatment soaked particle 72 hours in water caused increase of HCHO emission.

Investigation on the Physical Properties of Acetylated Domestic Softwoods (아세틸화처리 국산 침엽수재의 물리적 성질 조사)

  • Lee, Won-Hee;Hong, Seung-Hyun;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권4호
    • /
    • pp.429-437
    • /
    • 2015
  • It has been known that acetylation improves the dimensional stability of wood. Liquid phase acetylation is more popular than gas-phase acetylation for the effectiveness of weight gain of wood. In this study domestic red and Korean pine specimens were liquid phase acetylated and their physical properties, such as density, bending strength, dimensional stability etc., were investigated. Acetylation increased the average weights of red and Korean pine specimens by 10.4% and 9.2%, respectively, and their average oven-dry densities were increased by 6.9% and 4.6%, respectively. Acetylation did not influence on modulus of rupture (MOR), modulus of elasticity (MOE) and dynamic MOE (DMOE). The average percentage reduction in hygroscopicity (PRH) of red and Korean pine specimens were respectively 20.6% and 13.8%, while the average percentage reduction in water soaking (PRW) were respectively 20.0% and 8.5%. Thus it can be concluded that the liquid acetylation improved the dimensional stability of red pine specimens more than that of Korean pine specimens.