• Title/Summary/Keyword: Wollastonite

Search Result 99, Processing Time 0.022 seconds

Effect of Sulfur Dioxide on Crops - Physiology of Lesion, Yield Loss, and Preventive Measures (아황산(亞黃酸)가스에 의(依)한 농작물(農作物)의 피해생리(被害生理) 감수율(減收率) 및 피해경감(被害輕減)에 관(關)한 연구(硏究))

  • Han, Ki-Hak
    • Applied Biological Chemistry
    • /
    • v.16 no.3
    • /
    • pp.146-165
    • /
    • 1973
  • Crop damages caused by sulfur dioxide poisoning were studied with respect to physiology of lesion, yield loss and prevention measures. The results are summarized as follows; 1. On the physiology of injury: The sulfur dioxide gas did no: affect the pH and $E_h$ values of the tested leaf juice of plants. Peroxidase activity was inhibited just after sulfur dioxide treatment but gradually recovered to normal after 10 hours. Methanolic chlorophyll solution was instantaneously and irreversibly bleached by the addition of sulfur dioxide gas with no evidence of pheophytin formation. It seems that chlorophyll forms colourless addition product or is reduced to colourless form with either sulfur dioxide gas or sulfurous acid. Chlorophyll in the chloroplast was also bleached by the sulfur dioxide treatment, as in the case of methanolic solution of chlorophyll, except that the rate of bleaching was rather slow, requiring 1-2 hours. It appears that the most inflicting cause of sulfur dioxide gas to plants may be the destruction of chlorophyll by the poisoning gas. 2. On the effects to crop yield: The crop yield losses were proportional to the concentration of inflicting sulfur dioxide gas. The order of tolerence of the crops to the sulfur dioxide gas was as follows - chinese cabbage being the most susceptible; wheat, paddy rice, barley, soybean, welsh onion, radish and chinese cabbage. The crucifer crops were generally found more susceptible than other crops studied. With respect to the growing stages of crops exposed to sulfur dioxide gas, it was found that the flowering stage was the most susceptible fellowed by panicle forming, milky and tillering in the decreasing order of susceptibility. 3. On the preventive measures of yield losses: Soil applications of potassium, wollastonite, lime or spray of lime water were effective to prevent yield losses from sulfur dioxide fumigation of paddy rice, barley, and soybeans. The most responsive treatment was lime water spray for all crops tested. In case of sulfur dioxide fumigated paddy rice, the lime water spray also increased carbon assimilation.

  • PDF

Effect of Fineness of Siliceous Materials on Correction of Soil Acidity under Submerged Condition (담수시(湛水時) 규산물질(珪酸物質)들의 입도별(粒度別) 토양산도교정능력(土壤酸度矯正能力))

  • Lee, Yun Hwan;Han, Ki Hak;Kim, Bok Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.59-64
    • /
    • 1972
  • The liming effect of the four different siliceous materials with six grades of fineness were investigated in comparison with limestone under the submerged condition for three months, and the alkalinity extracted by 0.07N-EDTA and N-NaOAc solutions were determined to evaluate the neutralizing power of these materials. 1. Fused phosphate took 20 days with finer particles than 60 mesh (Tyler), 34 days with -40+48 mesh particles and 84 days with -20+25 mesh particles to reach the pH 5.5 from pH 4.0 of initial soil pH. These adjusted soil acidities were less 1.0-0.5 unit of pH compared with the pH of particles of limestone. 2. The basic reduction furnace slag increased the pH value to 5.5 in the finer particles than 100 mesh, but the other coarse particles appeared to have slow changes of the soil acidity to pH 4.5-4.7 for the three months. Wollastonite didn't affect the increase of soil pH in coarser particles than 25 mesh whereas other finer particles increased upto pH 4.5-5.0. Blast furnace slag is definitely slower through all sizes of particles. 3. In the relationship between the adjusted soil acidities and alkalinities dissolved in EDTA and NaOAc solution, NaOAc-alkalinity agreed quite closely to the activity of neutralizing value of silicates and limestone containing fineness of particles. The correlation coefficients between the amended soil acidities and NaOAc-alkalinities were stabilized with high significance at the 8 days after water logging and 16 days with the EDTA-alkalinities.

  • PDF

Hidden Porphyry-Related Ore Potential of the Geumseong Mo Deposit and Its Genetic Environment (금성 몰리브데늄광상의 잠두 반암형 광체에 대한 부존가능성과 성인적 환경)

  • Choi, Seon-Gyu;Park, Jung-Woo;Seo, Ji-Eun;Kim, Chang-Seong;Shin, Jong-Ki;Kim, Nam-Hyuck;Yoo, In-Kol;Lee, Ji-Yun;Ahn, Yong-Hwan
    • Economic and Environmental Geology
    • /
    • v.40 no.1 s.182
    • /
    • pp.1-14
    • /
    • 2007
  • The Guemseong mine is located near the southern margin of the Jurassic Jecheon granitoids collectively with the Cambro-Ordovician mixed dolostone-limestone series of the Yeongweol Group, Choseon Supergroup. Here, two spatially distinct types of skarn formation have been observed. The upper transitional skarn is the calcic Mo skarn which has the mineral assemblage of $garnet+hedenbergite+epidote{\pm}wollastonite{\pm}magnetite{\pm}hematite{\pm}amphibole{\pm}chlorite{\pm}vesuvianite$ within the calcite marble. On the other hand, the lower proximal skarn occurs as a discordant magnesian Fe skarn at the contact of Mo-bearing aplitic cupolas with unidirectional solidification texture(UST) within the dolomitic marble. The magnesian Fe skarn has the mineral assemlage $olivine+diopside+magnetite+tremolite+serpentine+talc+chlorite{\pm}phlogopite$. The formation of two different types of skarn and ore mineralization in Geumseong mine have been attributed to multistage and complex metasomatic replacements that ultimately resulted in silicate-oxide-sulfide sequence of metasomatism. An early prograde stage with anhydrous skarn minerals such as olivine, clinopyroxene and/or garnet with magnetite, formed from high temperature (about $500^{\circ}\;to\;400^{\circ}C$) at an environmental condition of low $CO_2$ fugacity ($XCO_2<0.1$) and 0.5 kbar. The later retrograde stage with hydrous silicates such as amphibole, serpentine, phlogopite, epidote and chlorite with molybdenite or hematite, termed from relatively lower temperature (about $400^{\circ}\;to\;300^{\circ}C$).

Effect of Carbon Dioxide Pressure on Mineral Carbonation in Acidic Solutions (산성용액에서 이산화탄소의 압력이 광물탄산화에 미치는 영향)

  • Ryu, Kyoung Won;Hong, Seok Jin;Choi, Sang Hoon
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Magnesium silicate minerals such as serpentine [Mg3Si2O5(OH)4] have a high potential for the sequestration of CO2; thus, their reactivity toward dissolution under CO2-free and CO2-containing conditions in acidic solvents is a critical process with respect to their carbonation reactions. To examine the carbonation efficiency and dissolution mechanism of serpentine, hydrothermal treatment was performed to the starting material via a modified direct aqueous carbonation process at 100 and 150℃. The serpentine dissolution experiments were conducted in H2SO4 solution with concentration range of 0.3-1 M and at a CO2 partial pressure of 3 MPa. The initial pH of the solution was adjusted to 13 for the carbonation process. Under CO2-free and CO2-containing conditions, the carbonation efficiency increased in proportion to the concentration of H2SO4 and the reaction temperature. The leaching rate under CO2-containing conditions was higher than that under CO2-free conditions. This suggests that shows the presence of CO2 affects the carbonation reaction. The leaching and carbonation efficiencies at 150℃ in 1 M H2SO4 solution under CO2-containing conditions were 85 and 84%, respectively. The dissolution rate of Mg was higher than that of Si, such that the Mg : Si ratio of the reacted serpentine decreased from the inner part (approximately 1.5) to the outer part (less than 0.1). The resultant silica-rich layer of the reaction product ultimately changed through the Mg-depleted skeletal phase and the pseudo-serpentine phase to the amorphous silica phase. A passivating silica layer was not observed on the outer surface of the reacted serpentine.

Mineralogy and Genetic Environments of the Seongdo Pb-Zn deposit, Goesan (괴산 성도 연-아연 광상의 산출광물과 생성환경)

  • Ahn, Seongyeol;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.325-340
    • /
    • 2017
  • The Seongdo Pb-Zn deposit, located in the northwestern part of the Ogcheon Metamorphic Belt, consists of skarn ore replacing limestone within the Hwajeonri Formation of Ogcheon Group and hydrothermal vein ore filling the fracture of host rock. Skarn minerals comprise mostly hedenbergitic pyroxene, garnet displaying oscillatory zonal texture composed of grossular and andradite, and a small amount of wollastonite, tremolite, and epidote, indicating reducing condition of formation. Ore minerals of skarn ore include sphalerite and galena with a small amount of pyrite, pyrrhotite, and chalcopyrite. In hydrothermal vein ore, arsenopyrite, sphalerite, chalcopyrite, and pyrite occur with a small amount of galena, native Bi, and stannite. Chemical compositions of sphalerite vary from 17.4 mole% FeS in average for dark grey sphalerite, 3.6 mole% for reddish brown sphalerite in skarn ore, and to 10.3 mole% FeS in hydrothermal vein ore. In comparison with representative metallic deposits in South Korea on the FeS-MnS-CdS diagram, skarn and hydrothermal vein ore plot close to the field of Pb-Zn deposits and Au-Ag deposits, respectively. Arsenic contents of arsenopyrite in hydrothermal vein ore decrease from 31.93~33.00 at.% in early stage to 29.58~30.21 at.% in middle stage, and their corresponding mineralizing temperature and sulfur fugacity are $441{\sim}490^{\circ}C$, $10^{-6}{\sim}10^{-4.5}atm$. and $330{\sim}364^{\circ}C$, <$10^{-8}atm$. respectively. Phase equilibrium temperatures calculated from Fe and Zn contents for coexisting sphalerite and stannite in hydrothermal vein are $236{\sim}254^{\circ}C$. Sulfur isotope compositions are 5.4~7.2‰ for skarn ore and 5.4~8.4‰ for hydrothermal vein ore, being similar or slightly higher to magmatic sulfur, suggesting that ore sulfur was mostly of magmatic origin with partial derivation from host rocks. However, much higher sulfur isotope equilibrium temperatures of $549^{\circ}C$$487^{\circ}C$, respectively for skarn ore and hydrothermal ore, than those estimated from phase equilibria imply that isotopic equilibrium has not been fully established.

W-Sn-Bi-Mo Mineralization of Shizhuyuan deposit, Hunan Province, China (중국 호남성 시죽원 광상의 W-Sn-Bi-Mo광화작용)

  • 윤경무;김상중;이현구;이찬희
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.179-189
    • /
    • 2002
  • The Geology of the Shizhuyuan W-Sn-Bi-Mo deposits, situated 16 Ian southeast of Chengzhou City, Hunan Province, China, consist of Proterozoic metasedimentary rocks, Devonian carbonate rocks, Jurassic granitic rocks, Cretaceous granite porphyry and ultramafic dykes. The Shizhuyuan polymetallic deposits were associated with medium- to coarse-grained biotite granite of stage I. According to occurrences of ore body, ore minerals and assemblages, they might be classified into three stages such as skarn, greisen and hydrothernlal stages. The skarn is mainly calcic skarn, which develops around the Qianlishan granite, and consists of garnet, pyroxene, vesuvianite, wollastonite, amphibolite, fluorite, epidote, calcite, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unidetified Bi- Te-S system mineral, magnetite, and hematite. The greisen was related to residual fluid of medium- to coarse-grained biotite granite, and is classified into planar and vein types. It is composed of quartz, feldspar, muscovite, chlorite, tourmaline, topaz, apatite, beryl, scheelite, wolframite, bismuthinite, molybdenite, cassiterite, native bismuth, unknown uranium mineral, unknown REE mineral, pyrite, magnetite, and chalcopyrite with minor hematite. The hydrothermal stage was related to Cretaceous porphyry, and consist of quartz, pyrite and chalcopyrite. Scheelite shows a zonal texture, and higher MoO) content as 9.17% in central part. Wolframite is WO); 71.20 to 77.37 wt.%, FeO; 9.37 to 18.40 wt.%, MnO; 8.17 to 15.31 wt.% and CaO; 0.01 to 4.82 wt.%. FeO contents of cassiterite are 0.49 to 4.75 wt.%, and show higher contents (4.]7 to 4.75 wt.%) in skarn stage (Stage I). Te and Se contents of native bismuth range from 0.00 to 1.06 wt.% and from 0.00 to 0.57 wt.%, respectively. Unidentified Bi-Te-S system mineral is Bi; 78.62 to 80.75 wt.%, Te; 12.26 to 14.76 wt.%, Cu; 0.00 to 0.42 wt.%, S; 5.68 to 6.84 wt.%, Se; 0.44 to 0.78 wt.%.

Effect of amendments and their causes of rice yield increase in ill drained paddy soil (습답(濕沓)에 대(對)한 개량제(改良劑)의 효과(效果)와 유효개량제(有效改良劑)의 수도증수원인(水稻增收原因)에 관(關)한 연구(硏究))

  • Park, Chon Suh;Song, Jae Ha;Kim, Yung Sup;Lee, Chung Young;Choh, Young Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 1971
  • In order to establish the method of improving ill drained paddy soil where the accumulation of absorption inhibitor is worried in the earlier stages of rice growth, proper soil is selected and an field experiment is designed having treatments such as lime materials, none sulfate fertilizers, boron and straw etc. The data of yield and plant analysis in different stages of rice growth is eveluated and discussed to obtain following summaries. (1) Significant yield increase was made by the treatment of lime materials such as slacked lime or wollastonite powder, materials inhibiting the activity of microorganisms such as boron and of none sulfate fertilizers lacking inhibitor producing sources. (2) The crop scientifice causes of decreasing yield are the decreasing the number of panicles per hill, grains per panicle and the weight of grains. (3) The plant nutritional causes of decreasing yield are the lowering of nitrogen content throughout the life, phosphate content since young premodia formation stage of plant and the decreased content of magnesium, calcium and silicate in straw at harvesting stage. (4) The causes of lowering the content of various elements in rice plant grown in ill drained paddy soil are suggested as root damage by producing and accumulating absorption inhibitors such as organic acids and hydrogen sulfide etc, from the following observed facts; (a) In young premodia formation stage, attaining to the maximum production and accumulation of absorption inhibitor, the phosphate accumulation in plant was smaller in the phosphate plots than without phosphate plots and much higher in the neutralized plots by adding lime materials. (b) In the plots of straw addition, the potassium content in plant at the young premodia formation stage is very low probabley due to root damage by absorption inhibitor produced from the process of straw decomposition but higher at the stage of harvesting probably due to the immetabolic negative absorption of damaged roots. (c) The effect of boron, known as the inhibitor of microorganism activity to decompose organic matter, is apparent. (d) The effect of nonsulfate fertilizer treatment, having no source of producing inhibitor such as hydrogen sulfide, was significant. (e) All the yield components, decided around the young premodia formation stage attaining to the maximum inhibitor concentration in soil and minimum root activity, are significantly decreased.

  • PDF

Mineralogical Analysis of Calcium Silicate Cement according to the Mixing Rate of Waste Concrete Powder (폐콘크리트 미분말 치환율에 따른 이산화탄소 반응경화 시멘트의 광물상 분석)

  • Lee, Hyang-Sun;Song, Hun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.181-191
    • /
    • 2024
  • In the realm of cement manufacturing, concerted efforts are underway to mitigate the emission of greenhouse gases. A significant portion, approximately 60%, of these emissions during the cement clinker sintering process is attributed to the decarbonation of limestone, which serves as a fundamental ingredient in cement production. Prompted by these environmental concerns, there is an active pursuit of alternative technologies and admixtures for cement that can substitute for limestone. Concurrently, initiatives are being explored to harness technology within the cement industry for the capture of carbon dioxide from industrial emissions, facilitating its conversion into carbonate minerals via chemical processes. Parallel to these technological advances, economic growth has precipitated a surge in construction activities, culminating in a steady escalation of construction waste, notably waste concrete. This study is anchored in the innovative production of calcium silicate cement clinkers, utilizing finely powdered waste concrete, followed by a thorough analysis of their mineral phases. Through X-ray diffraction(XRD) analysis, it was observed that increasing the substitution level of waste concrete powder and the molar ratio of SiO2 to (CaO+SiO2) leads to a decrease in Belite and γ-Belite, whereas minerals associated with carbonation, such as wollastonite and rankinite, exhibited an upsurge. Furthermore, the formation of gehlenite in cement clinkers, especially at higher substitution levels of waste concrete powder and the aforementioned molar ratio, is attributed to a synthetic reaction with Al2O3 present in the waste concrete powder. Analysis of free-CaO content revealed a decrement with increasing substitution rate of waste concrete powder and the molar ratio of SiO2/(CaO+SiO2). The outcomes of this study substantiate the viability of fabricating calcium silicate cement clinkers employing waste concrete powder.

Structural and Compositional Characteristics of Skarn Zinc-Lead Deposits in the Yeonhwa-Ulchin Mining District, Southeastern Taebaegsan Region, Korea Part II : The Yeonhwa II Mine (연화(蓮花)-울진광산지대(蔚珍鑛山地帶) 스카른연(鉛)·아연광상(亞鉛鑛床)의 구조적(構造的) 및 성분적(成分的) 특징(特徵) 기이(其二) : 제2연화광산(第二蓮花鑛山))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.12 no.3
    • /
    • pp.147-176
    • /
    • 1979
  • The Yeonhwa II zinc-lead mine is characterized by a dozen of moderately dipping tabular orebodies of skarn and zinc-lead sulfides, developed in accordance with the ENE-trending bedding thrusts and bedding planes of the Pungchon Limestone and underlying Myobong Formation, mostly along the contacts of a ENE-trending sill and a NW-trending dike of quartz mononite porphyry. The orebodies occur in three groups: (1) the footwall Wolgok orebodies with respect to the sill, (2) the hangingwall Wolgok orebodies, and (3) the Seongok orebodies extended from dike contacts into carbonate beds. Mineral compositions of these orebodies are dominated by calc-silicates (skarn) associated with ore minerals of sphalerite, galena, and chalcopyrite, as well as sulfide gangue of pyrrhotite. A pair of exo- and endo-skerns in the Wolgok footwall contact aureole between the Pungchon Limestone and quartz monzonite porphyry on the -120 level represents a well-developed symmetrical pattern of mineral zoning: a garnet/quartz zone in the center of exoskarn, two zones of pyroxene with ore minerals on both sides of the garnet/quartz zone, further outwards-an epidote/chlorite-bearing hornfelsic zone in the Myobong slate beyond a zone of unaffected limestone, and an epidote-dominated zone of endo skarn on the opposite side toward fresh quartz monzonite porphyry. These features indicate a combination of two effects on the skarn formation: (1) differences in composition of the host rocks(sedimentary and ignous), and (2) progressive outward migration of inner zones on outer zones on the course of metasomatic replacement of the pre-existing minerals. Microprobe analyses of garnet, pyroxene, pyroxenoids, epidote, and chlorite for nine major elements on a total of 23 mineral grains revealed that: the pyroxenes are hedenbergitic, in most zones, with a gradual decrease of Fe- and Mn-contents toward the central zone, whereas the garnets are andraditic in outer zones, but are grossularitic in the central zone. This indicates a reverse relationship of Fe-contents between pyroxene and garnet across the exoskarn zones. Pyroxenoids are lacking in wollastonite but are dominated by pyroxmangite, rhodonite and bustamite, indicating a Mn-rich nature in bulk chemistry. Pseudomorphic fluorite after garnet occurs abundantly reflecting a fluorine-enhanced evidence of the skarn-forming fluids. Epidote contains 0.19-0.25mole fraction of pistacite, and chlorite is Mn-rich but is Mg-poor. Sulfide mineralization took place with the most Fe-rich pyroxene rather than with garnet as indicated by the fact that the highest value of hedenbergite mole fraction occurs in the ore-bearing pyroxene zone. The Yeonhwa II ores are characterized by high zinc and low lead in metal grade, with minor quantity of copper content in almost constant grade. The hangingwall Wolgok and Seongok orebodies, that formed in a more open environment with respect to their local configurations of geologic setting, are more variable in metal grades and ratios, than are the footwall Wolgok orebodies formed in a more closed condition in a narrow interval of sedimentary beds.

  • PDF